39 research outputs found

    Defective B-cell proliferation and maintenance of long-term memory in patients with chronic granulomatous disease

    Get PDF
    Background: Chronic granulomatous disease (CGD) is a primary immune deficiency characterized by a defect in reactive oxygen species production. Although the effect of CGD mainly reflects on the phagocytic compartment, B-cell responses are also impaired in patients with CGD. Objective: We sought to investigate how defective gp91phox expression in patients with CGD and CGD carriers might affect the B-cell compartment and maintenance of long-term memory. Methods: We studied the B-cell compartment of patients with CGD in terms of phenotype and ability to produce reactive oxygen species and proliferate on stimuli differently directed to the B-cell receptor and Toll-like receptor 9. We further studied their capacity to maintain long-term memory by measuring cellular and serologic responses to measles. Results: We show that the memory B-cell compartment is impaired among patients with CGD, as indicated by reduced total (CD191CD271) and resting (CD191CD271CD211) memory B cells in parallel to increased naive (CD191CD272IgD1) B-cell frequencies. Data on CGD carriers reveal that such alterations are related to gp91phox expression. Moreover, proliferative capabilities of B cells on selective in vitro stimulation of B-cell receptor or Toll-like receptor 9 pathways were reduced in patients with CGD compared with those seen in age-matched healthy control subjects. Significantly lower measles-specific antibody levels and antibody-secreting cell numbers were also observed, indicating a poor ability to maintain long-term memory in these patients. Conclusion: Altogether, our data suggest that patients with CGD present a defective B-cell compartment in terms of frequencies of memory B cells, response to in vitro stimulation, and maintenance of long-term antigen-specific memory

    Characterization of Stem-Like Cells in Mucoepidermoid Tracheal Paediatric Tumor

    Get PDF
    Stem cells contribute to regeneration of tissues and organs. Cells with stem cell-like properties have been identified in tumors from a variety of origins, but to our knowledge there are yet no reports on tumor-related stem cells in the human upper respiratory tract. In the present study, we show that a tracheal mucoepidermoid tumor biopsy obtained from a 6 year-old patient contained a subpopulation of cells with morphology, clonogenicity and surface markers that overlapped with bone marrow mesenchymal stromal cells (BM-MSCs). These cells, designated as MEi (mesenchymal stem cell-like mucoepidermoid tumor) cells, could be differentiated towards mesenchymal lineages both with and without induction, and formed spheroids in vitro. The MEi cells shared several multipotent characteristics with BM-MSCs. However, they displayed differences to BM-MSCs in growth kinectics and gene expression profiles relating to cancer pathways and tube development. Despite this, the MEi cells did not possess in vivo tumor-initiating capacity, as proven by the absence of growth in situ after localized injection in immunocompromised mice. Our results provide an initial characterization of benign tracheal cancer-derived niche cells. We believe that this report could be of importance to further understand tracheal cancer initiation and progression as well as therapeutic development

    Comprehensive Cell Surface Protein Profiling Identifies Specific Markers of Human Naive and Primed Pluripotent States

    Get PDF
    Human pluripotent stem cells (PSCs) exist in naive and primed states and provide important models to investigate the earliest stages of human development. Naive cells can be obtained through primed-to-naive resetting, but there are no reliable methods to prospectively isolate unmodified naive cells during this process. Here we report comprehensive profiling of cell surface proteins by flow cytometry in naive and primed human PSCs. Several naive-specific, but not primed-specific, proteins were also expressed by pluripotent cells in the human preimplantation embryo. The upregulation of naive-specific cell surface proteins during primed-to-naive resetting enabled the isolation and characterization of live naive cells and intermediate cell populations. This analysis revealed distinct transcriptional and X chromosome inactivation changes associated with the early and late stages of naive cell formation. Thus, identification of state-specific proteins provides a robust set of molecular markers to define the human PSC state and allows new insights into the molecular events leading to naive cell resetting.Imaging was performed at the Live Cell Imaging Facility/Nikon Center of Excellence, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden, supported by grants from the Knut and Alice Wallenberg Foundation, the Swedish Research Council, the Centre for Innovative Medicine, and the Jonasson donation to the School of Technology and Health, Royal Institute of Technology, Sweden. We would like to acknowledge the MedH Flow Cytometry facility at Karolinska Institutet, supported by grants from Karolinska Institutet and the Stockholm County Council. We thank Céline Vallot and Claire Rougeulle at the Université Paris Diderot for providing X chromosome SNP coordinates. We are grateful to Rudolph Jaenisch at the Whitehead Institute for Biomedical Research for providing WIBR3 cells and Austin Smith at the WT–MRC Cambridge Stem Cell Institute for providing H9 NK2 and FiPS cells. We thank all couples who donated embryos to this study. S.P., A.P.R., J.P.S., and F.L. are supported by grants from the Swedish Research Council (2013-2570), Ragnar Söderberg Foundation (M67/13), Swedish Foundation for Strategic Research (ICA-5), Knut and Alice Wallenberg Foundation (4-1205/2016 and 4-148/2017), and Centre for Innovative Medicine and by a Lau fellowship. R.W. is an ISAC Shared Resource Laboratory Emerging Leader. A.J.C. is supported by an MRC DTG Studentship (MR/J003808/1). P.J.R.G. is supported by the Wellcome Trust (WT093736) and BBSRC (BBS/ E/B/000C0402)

    Synthetic Toll Like Receptor-4 (TLR-4) Agonist Peptides as a Novel Class of Adjuvants

    Get PDF
    Background: Adjuvants serve as catalysts of the innate immune response by initiating a localized site of inflammation that is mitigated by the interactions between antigens and toll like receptor (TLR) proteins. Currently, the majority of vaccines are formulated with aluminum based adjuvants, which are associated with various side effects. In an effort to develop a new class of adjuvants, agonists of TLR proteins, such as bacterial products, would be natural candidates. Lipopolysaccharide (LPS), a major structural component of gram negative bacteria cell walls, induces the systemic inflammation observed in septic shock by interacting with TLR-4. The use of synthetic peptides of LPS or TLR-4 agonists, which mimic the interaction between TLR-4 and LPS, can potentially regulate cellular signal transduction pathways such that a localized inflammatory response is achieved similar to that generated by adjuvants. Methodology/Principal Findings: We report the identification and activity of several peptides isolated using phage display combinatorial peptide technology, which functionally mimicked LPS. The activity of the LPS-TLR-4 interaction was assessed by NF-kB nuclear translocation analyses in HEK-BLUE TM-4 cells, a cell culture model that expresses only TLR-4, and the murine macrophage cell line, RAW264.7. Furthermore, the LPS peptide mimics were capable of inducing inflammatory cytokine secretion from RAW264.7 cells. Lastly, ELISA analysis of serum from vaccinated BALB/c mice revealed that the LPS peptide mimics act as a functional adjuvant

    Characterization of Developmental Pathway of Natural Killer Cells from Embryonic Stem Cells In Vitro

    Get PDF
    In vitro differentiation of embryonic stem (ES) cells is often used to study hematopoiesis. However, the differentiation pathway of lymphocytes, in particular natural killer (NK) cells, from ES cells is still unclear. Here, we used a multi-step in vitro ES cell differentiation system to study lymphocyte development from ES cells, and to characterize NK developmental intermediates. We generated embryoid bodies (EBs) from ES cells, isolated CD34(+) EB cells and cultured them on OP9 stroma with a cocktail of cytokines to generate cells we termed ES-derived hematopoietic progenitors (ES-HPs). EB cell subsets, as well as ES-HPs derived from EBs, were tested for NK, T, B and myeloid lineage potentials using lineage specific cultures. ES-HPs derived from CD34(+) EBs differentiated into NK cells when cultured on OP9 stroma with IL-2 and IL-15, and into T cells on Delta-like 1-transduced OP9 (OP9-DL1) with IL-7 and Flt3-L. Among CD34(+) EB cells, NK and T cell potentials were detected in a CD45(−) subset, whereas CD45(+) EB cells had myeloid but not lymphoid potentials. Limiting dilution analysis of ES-HPs generated from CD34(+)CD45(−) EB cells showed that CD45(+)Mac-1(−)Ter119(−) ES-HPs are highly enriched for NK progenitors, but they also have T, B and myeloid potentials. We concluded that CD45(−)CD34(+) EB cells have lymphoid potential, and they differentiate into more mature CD45(+)Lin(−) hematopoietic progenitors that have lymphoid and myeloid potential. NK progenitors among ES-HPs are CD122(−) and they rapidly acquire CD122 as they differentiate along the NK lineage

    Prime-boost immunization of rabbits with HIV-1 gp120 elicits potent neutralization activity against a primary viral isolate

    Get PDF
    <div><p>Development of a vaccine for HIV-1 requires a detailed understanding of the neutralizing antibody responses that can be experimentally elicited to difficult-to-neutralize primary isolates. Rabbits were immunized with the gp120 subunit of HIV-1 JR-CSF envelope (Env) using a DNA-prime protein-boost regimen. We analyzed five sera that showed potent autologous neutralizing activity (IC50s at ∼10<sup>3</sup> to 10<sup>4</sup> serum dilution) against pseudoviruses containing Env from the primary isolate JR-CSF but not from the related isolate JR-FL. Pseudoviruses were created by exchanging each variable and constant domain of JR-CSF gp120 with that of JR-FL or with mutations in putative N-glycosylation sites. The sera contained different neutralizing activities dependent on C3 and V5, C3 and V4, or V4 regions located on the glycan-rich outer domain of gp120. All sera showed enhanced neutralizing activity toward an Env variant that lacked a glycosylation site in V4. The JR-CSF gp120 epitopes recognized by the sera are generally distinct from those of several well characterized mAbs (targeting conserved sites on Env) or other type-specific responses (targeting V1, V2, or V3 variable regions). The activity of one serum requires specific glycans that are also important for 2G12 neutralization and this serum blocked the binding of 2G12 to gp120. Our findings show that different fine specificities can achieve potent neutralization of HIV-1, yet this strong activity does not result in improved breadth.</p> </div

    Miller Creek

    Get PDF
    Oblique aerial view of Miller Cree

    Immune reconstitution and vaccination outcome in HIV-1 infected children: present knowledge and future directions

    No full text
    Current evidence on routine immunization of HIV-1 infected children point out the need for a special vaccine schedule in this population. However, optimal strategies for identifying individuals susceptible to infections, and then offering them sustained protection through appropriate immunization schedule, both in terms of timing and number of vaccine doses, still remain to be elucidated. Understanding the degree of immune recovery after HAART initiation is important in guiding administration of routine vaccination in HIV-1 infected children. Although quantitative measures (e.g., CD4+ T-cell counts and immunoglobulin levels) are frequently performed to evaluate immune parameters, these measures do not fully mirror functional immune recovery. Here, we will review the status of single mandatory and recommended vaccines for HIV-1 infected children in relation to immune recovery after HAART initiation with the aim of identifying new means to help design personalized vaccine schedules for this population
    corecore