2,125 research outputs found

    Melt-growth dynamics in CdTe crystals

    Full text link
    We use a new, quantum-mechanics-based bond-order potential (BOP) to reveal melt-growth dynamics and fine-scale defect formation mechanisms in CdTe crystals. Previous molecular dynamics simulations of semiconductors have shown qualitatively incorrect behavior due to the lack of an interatomic potential capable of predicting both crystalline growth and property trends of many transitional structures encountered during the melt \rightarrow crystal transformation. Here we demonstrate successful molecular dynamics simulations of melt-growth in CdTe using a BOP that significantly improves over other potentials on property trends of different phases. Our simulations result in a detailed understanding of defect formation during the melt-growth process. Equally important, we show that the new BOP enables defect formation mechanisms to be studied at a scale level comparable to empirical molecular dynamics simulation methods with a fidelity level approaching quantum-mechanical method

    Force induced triple point for interacting polymers

    Get PDF
    We show the existence of a force induced triple point in an interacting polymer problem that allows two zero-force thermal phase transitions. The phase diagrams for three different models of mutually attracting but self avoiding polymers are presented. One of these models has an intermediate phase and it shows a triple point but not the others. A general phase diagram with multicritical points in an extended parameter space is also discussed.Comment: 4 pages, 8 figures, revtex

    Spin Fine Structure in Optically Excited Quantum Dot Molecules

    Full text link
    The interaction between spins in coupled quantum dots is revealed in distinct fine structure patterns in the measured optical spectra of InAs/GaAs double quantum dot molecules containing zero, one, or two excess holes. The fine structure is explained well in terms of a uniquely molecular interplay of spin exchange interactions, Pauli exclusion and orbital tunneling. This knowledge is critical for converting quantum dot molecule tunneling into a means of optically coupling not just orbitals, but spins.Comment: 10 pages, 7 figures, added material, (published

    Electrically tunable g-factors in quantum dot molecular spin states

    Full text link
    We present a magneto-photoluminescence study of individual vertically stacked InAs/GaAs quantum dot pairs separated by thin tunnel barriers. As an applied electric field tunes the relative energies of the two dots, we observe a strong resonant increase or decrease in the g-factors of different spin states that have molecular wavefunctions distributed over both quantum dots. We propose a phenomenological model for the change in g-factor based on resonant changes in the amplitude of the wavefunction in the barrier due to the formation of bonding and antibonding orbitals.Comment: 5 pages, 5 figures, Accepted by Phys. Rev. Lett. New version reflects response to referee comment

    Constructive Dimension and Turing Degrees

    Full text link
    This paper examines the constructive Hausdorff and packing dimensions of Turing degrees. The main result is that every infinite sequence S with constructive Hausdorff dimension dim_H(S) and constructive packing dimension dim_P(S) is Turing equivalent to a sequence R with dim_H(R) <= (dim_H(S) / dim_P(S)) - epsilon, for arbitrary epsilon > 0. Furthermore, if dim_P(S) > 0, then dim_P(R) >= 1 - epsilon. The reduction thus serves as a *randomness extractor* that increases the algorithmic randomness of S, as measured by constructive dimension. A number of applications of this result shed new light on the constructive dimensions of Turing degrees. A lower bound of dim_H(S) / dim_P(S) is shown to hold for the Turing degree of any sequence S. A new proof is given of a previously-known zero-one law for the constructive packing dimension of Turing degrees. It is also shown that, for any regular sequence S (that is, dim_H(S) = dim_P(S)) such that dim_H(S) > 0, the Turing degree of S has constructive Hausdorff and packing dimension equal to 1. Finally, it is shown that no single Turing reduction can be a universal constructive Hausdorff dimension extractor, and that bounded Turing reductions cannot extract constructive Hausdorff dimension. We also exhibit sequences on which weak truth-table and bounded Turing reductions differ in their ability to extract dimension.Comment: The version of this paper appearing in Theory of Computing Systems, 45(4):740-755, 2009, had an error in the proof of Theorem 2.4, due to insufficient care with the choice of delta. This version modifies that proof to fix the error

    Large-area submillimeter resolution CdZnTe strip detector for astronomy

    Get PDF
    We report the first performance measurements of a sub-millimeter CdZnTe strip detector developed as a prototype for space-borne astronomical instruments. Strip detector arrays can be used to provide two-dimensional position resolution with fewer electronic channels than pixellated arrays. Arrays of this type and other candidate technologies are under investigation for the position-sensitive backplane detector for a coded-aperture telescope operating in the range of 30 - 300 keV. The prototype is a 1.4 mm thick, 64 multiplied by 64 stripe CdZnTe array of 0.375 mm pitch in both dimensions, approximately one square inch of sensitive area. Pulse height spectra in both single and orthogonal stripe coincidence mode were recorded at several energies. The results are compared to slab- and pixel-geometry detector spectra. The room-temperature energy resolution is less than 10 keV (FWHM) for 122 keV photons with a peak-to-valley ratio greater than 5:1. The response to photons with energies up to 662 keV appears to be considerably improved relative to that of previously reported slab and pixel detectors. We also show that strip detectors can yield spatial and energy resolutions similar to those of pixellated arrays with the same dimensions. Electrostatic effects on the pulse heights, read-out circuit complexity, and issues related to design of space borne instruments are also discussed

    Development of an orthogonal-stripe CdZnTe gamma radiation imaging spectrometer

    Get PDF
    We report performance measurements of a sub-millimeter resolution CdZnTe strip detector developed as a prototype for astronomical instruments operating with good efficiency in the 30-300 keV photon energy range. The prototype is a 1.4 mm thick, 64×64 contact stripe CdZnTe array of 0.375 mm pitch in both dimensions. Pulse height spectra were recorded in orthogonal-stripe coincidence mode which demonstrate room-temperature energy resolution \u3c10 keV (FWHM) for 122 keV photons with a peak-to-valley ratio \u3e5:1. Good response is also demonstrated at higher energies using a coplanar grid readout configuration. Spatial resolution capabilities finer than the stripe pitch are demonstrated. We present the image of a 133Ba source viewed through a collimator slit produced by a 4×4 stripe detector segment. Charge signals from electron and hole collecting contacts are also discussed

    Characteristic molecular properties of one-electron double quantum rings under magnetic fields

    Full text link
    The molecular states of conduction electrons in laterally coupled quantum rings are investigated theoretically. The states are shown to have a distinct magnetic field dependence, which gives rise to periodic fluctuations of the tunnel splitting and ring angular momentum in the vicinity of the ground state crossings. The origin of these effects can be traced back to the Aharonov-Bohm oscillations of the energy levels, along with the quantum mechanical tunneling between the rings. We propose a setup using double quantum rings which shows that Aharonov-Bohm effects can be observed even if the net magnetic flux trapped by the carriers is zero.Comment: 16 pages (iopart format), 10 figures, accepted in J.Phys.Cond.Mat

    In flight performance and first results of FREGATE

    Full text link
    The gamma-ray detector of HETE-2, called FREGATE, has been designed to detect gamma-ray bursts in the energy range [6-400] keV. Its main task is to alert the other instruments of the occurrence of a gamma-ray burst (GRB) and to provide the spectral coverage of the GRB prompt emission in hard X-rays and soft gamma-rays. FREGATE was switched on on October 16, 2000, one week after the successful launch of HETE-2, and has been continuously working since then. We describe here the main characteristics of the instrument, its in-flight performance and we briefly discuss the first GRB observations.Comment: Invited lecture at the Woods Hole 2001 GRB Conference, 8 pages, 15 figure

    Performance of CdZnTe strip detectors as sub-millimeter resolution imaging gamma radiation spectrometers

    Get PDF
    We report & gamma;-ray detection performance measurements and computer simulations of a sub-millimeter pitch CdZnTe strip detector. The detector is a prototype for & gamma;-ray astronomy measurements in the range of 20-200 keV. The prototype is a 1.5 mm thick, 64×64 orthogonal stripeCdZnTe detector of 0.375 mm pitch in both dimensions, with approximately one square inch of sensitive area. Using discrete laboratory electronics to process signals from an 8×8 stripe region of the prototype we measured good spectroscopic uniformity and sub-pitch (~0.2 mm) spatial resolution in both x and y dimensions. We present below measurements of the spatial uniformity, relative timing and pulse height of the anode and cathode signals, and the photon detection efficiency. We also present a technique for determining the location of the event in the third dimension (depth). We simulated the photon interactions and signal generation in the strip detector and the test electronics and we compare these results with the data. The data indicate that the cathode signal-as well as the anode signal-arises more strongly from the conduction electrons rather than the holes
    corecore