18 research outputs found

    Philadelphia\u27s Compulsory Arbitration Program

    Get PDF

    The LHS 1678 system : two earth-sized transiting planets and an astrometric companion orbiting an M dwarf near the convective boundary at 20 pc

    Get PDF
    Funding: The MEarth Team gratefully acknowledges funding from the David and Lucile Packard Fellowship for Science and Engineering (awarded to D.C.). This material is based upon work supported by the National Science Foundation under grants AST-0807690, AST-1109468, AST-1004488 (Alan T. Waterman Award), and AST-1616624, and upon work supported by the National Aeronautics and Space Administration under Grant No. 80NSSC18K0476 issued through the XRP Program. This work is made possible by a grant from the John Templeton Foundation. N. A.-D. acknowledges the support of FONDECYT project 3180063. TD acknowledges support from MIT’s Kavli Institute as a Kavli postdoctoral fellow. KH acknowledges support from STFC grant ST/R000824/1. E.A.G. thanks the LSSTC Data Science Fellowship Program, which is funded by LSSTC, NSF Cybertraining Grant #1829740, the Brinson Foundation, and the Moore Foundation; The material is based upon work supported by NASA under award number 80GSFC21M0002. This work was supported by the lead author’s appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Universities Space Research Association under contract with NASAWe present the Transiting Exoplanet Survey Satellite (TESS) discovery of the LHS 1678 (TOI-696) exoplanet system, comprised of two approximately Earth-sized transiting planets and a likely astrometric brown dwarf orbiting a bright (VJ = 12.5, Ks = 8.3) M2 dwarf at 19.9 pc. The two TESS-detected planets are of radius 0.70 ± 0.04 R⊕ and 0.98 ± 0.06 R⊕ in 0.86 day and 3.69 day orbits, respectively. Both planets are validated and characterized via ground-based follow-up observations. High Accuracy Radial Velocity Planet Searcher RV monitoring yields 97.7 percentile mass upper limits of 0.35 M⊕ and 1.4 M⊕ for planets b and c, respectively. The astrometric companion detected by the Cerro Tololo Inter-American Observatory/Small and Moderate Aperture Telescope System 0.9 m has an orbital period on the order of decades and is undetected by other means. Additional ground-based observations constrain the companion to being a high-mass brown dwarf or smaller. Each planet is of unique interest; the inner planet has an ultra-short period, and the outer planet is in the Venus zone. Both are promising targets for atmospheric characterization with the James Webb Space Telescope and mass measurements via extreme-precision radial velocity. A third planet candidate of radius 0.9 ± 0.1 R⊕ in a 4.97 day orbit is also identified in multicycle TESS data for validation in future work. The host star is associated with an observed gap in the lower main sequence of the Hertzsprung–Russell diagram. This gap is tied to the transition from partially to fully convective interiors in M dwarfs, and the effect of the associated stellar astrophysics on exoplanet evolution is currently unknown. The culmination of these system properties makes LHS 1678 a unique, compelling playground for comparative exoplanet science and understanding the formation and evolution of small, short-period exoplanets orbiting low-mass stars.Publisher PDFPeer reviewe

    A planet within the debris disk around the pre-main-sequence star AU Microscopii

    Full text link
    AU Microscopii (AU Mic) is the second closest pre main sequence star, at a distance of 9.79 parsecs and with an age of 22 million years. AU Mic possesses a relatively rare and spatially resolved3 edge-on debris disk extending from about 35 to 210 astronomical units from the star, and with clumps exhibiting non-Keplerian motion. Detection of newly formed planets around such a star is challenged by the presence of spots, plage, flares and other manifestations of magnetic activity on the star. Here we report observations of a planet transiting AU Mic. The transiting planet, AU Mic b, has an orbital period of 8.46 days, an orbital distance of 0.07 astronomical units, a radius of 0.4 Jupiter radii, and a mass of less than 0.18 Jupiter masses at 3 sigma confidence. Our observations of a planet co-existing with a debris disk offer the opportunity to test the predictions of current models of planet formation and evolution.Comment: Nature, published June 24th [author spelling name fix

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    The LHS 1678 System: Two Earth-sized Transiting Planets and an Astrometric Companion Orbiting an M Dwarf Near the Convective Boundary at 20 pc

    Get PDF
    We present the Transiting Exoplanet Survey Satellite (TESS) discovery of the LHS 1678 (TOI-696) exoplanet system, comprised of two approximately Earth-sized transiting planets and a likely astrometric brown dwarf orbiting a bright (V J = 12.5, K s = 8.3) M2 dwarf at 19.9 pc. The two TESS-detected planets are of radius 0.70 ± 0.04 R ⊕ and 0.98 ± 0.06 R ⊕ in 0.86 day and 3.69 day orbits, respectively. Both planets are validated and characterized via ground-based follow-up observations. High Accuracy Radial Velocity Planet Searcher RV monitoring yields 97.7 percentile mass upper limits of 0.35 M ⊕ and 1.4 M ⊕ for planets b and c, respectively. The astrometric companion detected by the Cerro Tololo Inter-American Observatory/Small and Moderate Aperture Telescope System 0.9 m has an orbital period on the order of decades and is undetected by other means. Additional ground-based observations constrain the companion to being a high-mass brown dwarf or smaller. Each planet is of unique interest; the inner planet has an ultra-short period, and the outer planet is in the Venus zone. Both are promising targets for atmospheric characterization with the James Webb Space Telescope and mass measurements via extreme-precision radial velocity. A third planet candidate of radius 0.9 ± 0.1 R ⊕ in a 4.97 day orbit is also identified in multicycle TESS data for validation in future work. The host star is associated with an observed gap in the lower main sequence of the Hertzsprung-Russell diagram. This gap is tied to the transition from partially to fully convective interiors in M dwarfs, and the effect of the associated stellar astrophysics on exoplanet evolution is currently unknown. The culmination of these system properties makes LHS 1678 a unique, compelling playground for comparative exoplanet science and understanding the formation and evolution of small, short-period exoplanets orbiting low-mass stars

    Philadelphia\u27s Compulsory Arbitration Program

    Get PDF

    The Doty-Doten family in America : descendants of Edward Doty, an emigrant by the Mayflower, 1620 /

    No full text
    Includes indexes.Reprint. Originally published: Brooklyn, N.Y. : E.A. Doty, 1897.Mode of access: Internet

    TESS Eclipsing Binary Stars. I. Short-cadence Observations of 4584 Eclipsing Binaries in Sectors 1-26

    No full text
    In this paper we present a catalog of 4584 eclipsing binaries observed during the first two years (26 sectors) of the TESS survey. We discuss selection criteria for eclipsing binary candidates, detection of hither-to unknown eclipsing systems, determination of the ephemerides, the validation and triage process, and the derivation of heuristic estimates for the ephemerides. Instead of keeping to the widely used discrete classes, we propose a binary star morphology classification based on a dimensionality reduction algorithm. Finally, we present statistical properties of the sample, we qualitatively estimate completeness, and discuss the results. The work presented here is organized and performed within the TESS Eclipsing Binary Working Group, an open group of professional and citizen scientists; we conclude by describing ongoing work and future goals for the group. The catalog is available from http://tessEBs.villanova.edu and from MAST.Comment: 32 pages, 21 figures, accepted to ApJ Supplement Series; comments welcom

    A planet within the debris disk around the pre-main-sequence star AU Microscopii

    No full text
    AU Microscopii (AU Mic) is the second closest pre-main-sequence star, at a distance of 9.79 parsecs and with an age of 22 million years. AU Mic possesses a relatively rare and spatially resolved edge-on debris disk extending from about 35 to 210 astronomical units from the star, and with clumps exhibiting non-Keplerian motion. Detection of newly formed planets around such a star is challenged by the presence of spots, plage, flares and other manifestations of magnetic ‘activity’ on the star. Here we report observations of a planet transiting AU Mic. The transiting planet, AU Mic b, has an orbital period of 8.46 days, an orbital distance of 0.07 astronomical units, a radius of 0.4 Jupiter radii, and a mass of less than 0.18 Jupiter masses at 3σ confidence. Our observations of a planet co-existing with a debris disk offer the opportunity to test the predictions of current models of planet formation and evolution
    corecore