15 research outputs found

    MEK Guards Proteome Stability and Inhibits Tumor-Suppressive Amyloidogenesis via HSF1

    Get PDF
    SummarySignaling through RAS/MAP kinase pathway is central to biology. ERK has long been perceived as the only substrate for MEK. Here, we report that HSF1, the master regulator of the proteotoxic stress response, is a new MEK substrate. Beyond mediating cell-environment interactions, the MEK-HSF1 regulation impacts malignancy. In tumor cells, MEK blockade inactivates HSF1 and thereby provokes proteomic chaos, presented as protein destabilization, aggregation, and, strikingly, amyloidogenesis. Unlike their non-transformed counterparts, tumor cells are particularly susceptible to proteomic perturbation and amyloid induction. Amyloidogenesis is tumor suppressive, reducing in vivo melanoma growth and contributing to the potent anti-neoplastic effects of proteotoxic stressors. Our findings unveil a key biological function of the oncogenic RAS-MEK signaling in guarding proteostasis and suppressing amyloidogenesis. Thus, proteomic instability is an intrinsic feature of malignant state, and disrupting the fragile tumor proteostasis to promote amyloidogenesis may be a feasible therapeutic strategy

    Loss of TRP53 (p53) accelerates tumorigenesis and changes the tumor spectrum of SJL/J mice.

    Get PDF
    Known as the guardian of the genome, transformation-related protein 53 (TRP53) is a well -known tumor suppressor. Here, we describe a novel TRP53 deficient mouse model on a tumor prone background-SJL/J mice. The absence of TRP53 (TRP53 nullizygosity) leads to a shift in the tumor spectrum from a non-Hodgkin\u27s-like disease to thymic lymphomas and testicular teratomas at a very rapid tumor onset averaging ~12 weeks of age. In haplotype studies, comparing tumor prone versus tumor resistant Trp53 null mouse strains, we found that other tumor suppressor, DNA repair and/or immune system genes modulate tumor incidence in TRP53 null strains, suggesting that even a strong tumor suppressor such as TRP53 is modulated by genetic background. Due to their rapid development of tumors, the SJL/J TRP53 null mice generated here can be used as an efficient chemotherapy or immunotherapy screening mouse model

    Evaluation of tarsal injuries in C57BL/6J male mice.

    Get PDF
    Tarsal joint abnormalities have been observed in aged male mice on a C57BL background. This joint disease consists of calcaneal displacement, inflammation, and proliferation of car- tilage and connective tissue, that can progress to ankylosis of the joint. While tarsal pathol- ogy has been described previously in C57BL/6N substrains, as well as in STR/ort and B10. BR strain, no current literature describes this disease occurring in C57BL/6J mice. More importantly the behavioral features that may result from such a change to the joint have yet to be evaluated. This condition was observed in older male mice of the C57BL/6J lineage, around the age of 20 weeks or older, at a frequency of 1% of the population. To assess potential phenotypic sequela, this study sought to evaluate body weight, frailty assessment, home cage wheel running, dynamic weight bearing, and mechanical allodynia with and with- out the presence of pain relief with morphine. Overall mice with tarsal injuries had signifi- cantly higher frailty scores (p\u3c 0.05) and weighed less (p\u3c0.01) compared to unaffected mice. Affected mice had greater overall touch sensitivity (p\u3c0.05) and they placed more weight on their forelimbs (p\u3c0.01) compared to their hind limbs. Lastly, when housed with a running wheel, affected mice ran for a shorter length of time (p\u3c0.01) but tended to run a greater distance within the time they did run (p\u3c0.01) compared to unaffected mice. When tested just after being given morphine, the affected mice performed more similarly to unaf- fected mice, suggesting there is a pain sensation to this disease process. This highlights the importance of further characterizing inbred mouse mutations, as they may impact research programs or specific study goals

    The occurrence of tarsal injuries in male mice of C57BL/6N substrains in multiple international mouse facilities.

    Get PDF
    Dislocation in hindlimb tarsals are being observed at a low, but persistent frequency in group-housed adult male mice from C57BL/6N substrains. Clinical signs included a sudden onset of mild to severe unilateral or bilateral tarsal abduction, swelling, abnormal hindlimb morphology and lameness. Contraction of digits and gait abnormalities were noted in multiple cases. Radiographical and histological examination revealed caudal dislocation of the calcaneus and partial dislocation of the calcaneoquartal (calcaneus-tarsal bone IV) joint. The detection, frequency, and cause of this pathology in five large mouse production and phenotyping centres (MRC Harwell, UK; The Jackson Laboratory, USA; The Centre for Phenogenomics, Canada; German Mouse Clinic, Germany; Baylor College of Medicine, USA) are discussed

    Rapamycin Ameliorates Nephropathy despite Elevating Hyperglycemia in a Polygenic Mouse Model of Type 2 Diabetes, NONcNZO10/LtJ.

    No full text
    While rapamycin treatment has been reported to have a putatively negative effect on glucose homeostasis in mammals, it has not been tested in polygenic models of type 2 diabetes. One such mouse model, NONcNZO10/LtJ, was treated chronically with rapamycin (14 ppm encapsulated in diet) and monitored for the development of diabetes. As expected, rapamycin treatment accelerated the onset and severity of hyperglycemia. However, development of nephropathy was ameliorated, as both glomerulonephritis and IgG deposition in the subendothelial tuft were markedly reduced. Insulin production and secretion appeared to be inhibited, suppressing the developing hyperinsulinemia present in untreated controls. Rapamycin treatment also reduced body weight gain. Thus, rapamycin reduced some of the complications of diabetes despite elevating hyperglycemia. These results suggest that multiple factors must be evaluated when assessing the benefit vs. hazard of rapamycin treatment in patients that have overt, or are at risk for, type 2 diabetes. Testing of rapamycin in combination with insulin sensitizers is warranted, as such compounds may ameliorate the putative negative effects of rapamycin in the type 2 diabetes environment. PLoS One 2014 Dec 4; 9(12):e114324

    Rapamycin/metformin co-treatment normalizes insulin sensitivity and reduces complications of metabolic syndrome in type 2 diabetic mice

    No full text
    Rapamycin treatment has positive and negative effects on progression of type 2 diabetes (T2D) in a recombinant inbred polygenic mouse model, male NONcNZO10/LtJ (NcZ10). Here, we show that combination treatment with metformin ameliorates negative effects of rapamycin while maintaining its benefits. From 12 to 30 weeks of age, NcZ10 males were fed a control diet or diets supplemented with rapamycin, metformin, or a combination of both. Rapamycin alone reduced weight gain, adiposity, HOMA-IR, and inflammation, and prevented hyperinsulinemia and pre-steatotic hepatic lipidosis, but exacerbated hyperglycemia, hypertriglyceridemia, and pancreatic islet degranulation. Metformin alone reduced hyperinsulinemia and circulating c-reactive protein, but exacerbated nephropathy. Combination treatment retained the benefits of both while preventing many of the deleterious effects. Importantly, the combination treatment reversed effects of rapamycin on markers of hepatic insulin resistance and normalized systemic insulin sensitivity in this inherently insulin-resistant model. In adipose tissue, rapamycin attenuated the expression of genes associated with adipose tissue expansion (Mest, Gpam), inflammation (Itgam, Itgax, Hmox1, Lbp), and cell senescence (Serpine1). In liver, the addition of metformin counteracted rapamycin-induced alterations of G6pc, Ppara, and Ldlr expressions that promote hyperglycemia and hypertriglyceridemia. Both rapamycin and metformin treatment reduced hepatic Fasn expression, potentially preventing lipidosis. These results delineate a state of insulin signaling restriction that withdraws endocrine support for further adipogenesis, progression of the metabolic syndrome, and the development of its comorbidities. Our results are relevant for the treatment of T2D, the optimization of current rapamycin-based treatments for posttransplant rejection and various cancers, and for the development of treatments for healthy aging

    A mouse Col4a4 mutation causing Alport glomerulosclerosis with abnormal collagen α3α4α5(IV) trimers.

    No full text
    A spontaneous mutation termed bilateral wasting kidneys (bwk) was identified in a colony of NONcNZO recombinant inbred mice. These mice exhibit a rapid increase of urinary albumin at an early age associated with glomerulosclerosis, interstitial nephritis, and tubular atrophy. The mutation was mapped to a location on chromosome 1 containing the Col4a3 and Col4a4 genes, for which mutations in the human orthologs cause the hereditary nephritis Alport syndrome. DNA sequencing identified a G-to-A mutation in the conserved GT splice donor of Col4a4 intron 30, resulting in skipping of exon 30 but maintaining the mRNA reading frame. Protein analyses showed that mutant collagen α3α4α5(IV) trimers were secreted and incorporated into the glomerular basement membrane (GBM), but levels were low, and GBM lesions typical of Alport syndrome were observed. Moving the mutation into the more renal damage-prone DBA/2J and 129S1/SvImJ backgrounds revealed differences in albuminuria and its rate of increase, suggesting an interaction between the Col4a4 mutation and modifier genes. This novel mouse model of Alport syndrome is the only one shown to accumulate abnormal collagen α3α4α5(IV) in the GBM, as also found in a subset of Alport patients. These mice will be valuable for testing potential therapies, for understanding abnormal collagen IV structure and assembly, and for gaining better insights into the mechanisms leading to Alport syndrome, and to the variability in the age of onset and associated phenotypes. Kidney Int 2014 Jun; 85(6):1461-8

    Genetic background determines renal response to chronic lithium treatment in female mice.

    No full text
    Chronic lithium treatment for bipolar disease causes mainly side effects in the kidney. A subset of lithium users develops nephrogenic diabetes insipidus (NDI), a urinary concentrating disorder, and chronic kidney disease (CKD). Age, lithium dose, and duration of treatment are important risk factors, whereas genetic background might also play an important role. To investigate the role of genetics, female mice of 29 different inbred strains were treated for 1 year with control or lithium chow and urine, blood, and kidneys were analyzed. Chronic lithium treatment increased urine production and/or reduced urine osmolality in 21 strains. Renal histology showed that lithium increased interstitial fibrosis and/or tubular atrophy in eight strains, whereas in none of the strains glomerular injury was induced. Interestingly, lithium did not elevate urinary albumin-creatinine ratio (ACR) in any strain, whereas eight strains even demonstrated a lowered ACR. The protective effect on ACR coincided with a similar decrease in urinary IgG levels, a marker of glomerular function, whereas the adverse effect of lithium on interstitial fibrosis/tubular atrophy coincided with a severe increase in urinary β2-microglobulin (β2M) levels, an indicator of proximal tubule damage. Genetic background plays an important role in the development of lithium-induced NDI and chronic renal pathology in female mice. The strong correlation of renal pathology with urinary β2M levels indicates that β2M is a promising biomarker for chronic renal damage induced by lithium

    Proliferative Typhlocolitis With Multinucleated Giant Cells: A Nonspecific Enteropathy in Immunodeficient Sentinel Mice.

    No full text
    Beginning in 2015, athymic nude sentinel mice from conventional, medium-, and high-security facilities presented to the Comparative Pathology Laboratory (CPL) with weight loss, diarrhea, and/or rectal prolapse. Regardless of whether clinical signs were present or absent, the gross observation of ceco-colonic thickening corresponded histologically to pleocellular typhlocolitis with mucosal hyperplasia and lamina proprial multinucleated cells. A subset of affected sentinels exhibited granulomatous serositis and hepatosplenic necrosis with multinucleated cells. Initial suspicion of mouse hepatitis virus infection was excluded by polymerase chain reaction, electron microscopy, and serology. Multinucleated giant cells were confirmed as macrophages by positive immunoreactivity to Mac-3 and Iba-1 and negative immunoreactivity to pancytokeratin. From conventional and medium-security facilities, Helicobacter species were identified in 40 of 143 (27.9%) mice, with H. hepaticus accounting for 72.5% of identified Helicobacter species. Other agents included opportunistic bacterial infection (41/145, 28.3%), murine norovirus (16/106, 15.1%), and pinworms (2/146, 1.4%). From high-security facilities, only Enterobacter cloacae was identified (2/13, 15.4%), and no evidence of Helicobacter sp., murine norovirus, or pinworms was present. No potentially infectious disease agent(s) was identified in 71 of 146 (48.6%) affected nude sentinels from conventional and medium-security facilities and 11 of 13 (84.6%) affected nude sentinels from high-security facilities. No statistically significant differences in histologic lesion scores were identified between Helicobacter-positive and Helicobacter-negative mice. Thus, proliferative typhlocolitis with multinucleated giant cells was considered a nonspecific histologic pattern associated with a variety of primary and opportunistic pathogens in athymic nude mice
    corecore