482 research outputs found

    Mean-field glass transition in a model liquid

    Full text link
    We investigate the liquid-glass phase transition in a system of point-like particles interacting via a finite-range attractive potential in D-dimensional space. The phase transition is driven by an `entropy crisis' where the available phase space volume collapses dramatically at the transition. We describe the general strategy underlying the first-principles replica calculation for this type of transition; its application to our model system then allows for an analytic description of the liquid-glass phase transition within a mean-field approximation, provided the parameters are chosen suitably. We find a transition exhibiting all the features associated with an `entropy crisis', including the characteristic finite jump of the order parameter at the transition while the free energy and its first derivative remain continuous.Comment: 12 pages, 6 figure

    Non-perturbative phenomena in the three-dimensional random field Ising model

    Full text link
    The systematic approach for the calculations of the non-perturbative contributions to the free energy in the ferromagnetic phase of the random field Ising model is developed. It is demonstrated that such contributions appear due to localized in space instanton-like excitations. It is shown that away from the critical region such instanton solutions are described by the set of the mean-field saddle-point equations for the replica vector order parameter, and these equations can be formally reduced to the only saddle-point equation of the pure system in dimensions (D-2). In the marginal case, D=3, the corresponding non-analytic contribution is computed explicitly. Nature of the phase transition in the three-dimensional random field Ising model is discussed.Comment: 12 page

    A crossing probability for critical percolation in two dimensions

    Get PDF
    Langlands et al. considered two crossing probabilities, pi_h and pi_{hv}, in their extensive numerical investigations of critical percolation in two dimensions. Cardy was able to find the exact form of pi_h by treating it as a correlation function of boundary operators in the Q goes to 1 limit of the Q state Potts model. We extend his results to find an analogous formula for pi_{hv} which compares very well with the numerical results.Comment: 8 pages, Latex2e, 1 figure, uuencoded compressed tar file, (1 typo changed

    Numerical Results For The 2D Random Bond 3-state Potts Model

    Full text link
    We present results of a numerical simulation of the 3-state Potts model with random bond, in two dimension. In particular, we measure the critical exponent associated to the magnetization and the specific heat. We also compare these exponents with recent analytical computations.Comment: 9 pages, latex, 3 Postscript figure

    Genus Zero Correlation Functions in c<1 String Theory

    Full text link
    We compute N-point correlation functions of pure vertex operator states(DK states) for minimal models coupled to gravity. We obtain agreement with the matrix model results on analytically continuing in the numbers of cosmological constant operators and matter screening operators. We illustrate this for the cases of the (2k1,2)(2k-1,2) and (p+1,p)(p+1,p) models.Comment: 11 pages, LaTeX, IMSc--92/35. (revised) minor changes plus one reference adde

    Explicit Renormalization Group for D=2 random bond Ising model with long-range correlated disorder

    Full text link
    We investigate the explicit renormalization group for fermionic field theoretic representation of two-dimensional random bond Ising model with long-range correlated disorder. We show that a new fixed point appears by introducing a long-range correlated disorder. Such as the one has been observed in previous works for the bosonic (ϕ4\phi^4) description. We have calculated the correlation length exponent and the anomalous scaling dimension of fermionic fields at this fixed point. Our results are in agreement with the extended Harris criterion derived by Weinrib and Halperin.Comment: 5 page

    Precision preparation of strings of trapped neutral atoms

    Get PDF
    We have recently demonstrated the creation of regular strings of neutral caesium atoms in a standing wave optical dipole trap using optical tweezers [Y. Miroshnychenko et al., Nature, in press (2006)]. The rearrangement is realized atom-by-atom, extracting an atom and re-inserting it at the desired position with sub-micrometer resolution. We describe our experimental setup and present detailed measurements as well as simple analytical models for the resolution of the extraction process, for the precision of the insertion, and for heating processes. We compare two different methods of insertion, one of which permits the placement of two atoms into one optical micropotential. The theoretical models largely explain our experimental results and allow us to identify the main limiting factors for the precision and efficiency of the manipulations. Strategies for future improvements are discussed.Comment: 25 pages, 18 figure

    Nematic-Isotropic Transition with Quenched Disorder

    Full text link
    Nematic elastomers do not show the discontinuous, first-order, phase transition that the Landau-De Gennes mean field theory predicts for a quadrupolar ordering in 3D. We attribute this behavior to the presence of network crosslinks, which act as sources of quenched orientational disorder. We show that the addition of weak random anisotropy results in a singular renormalization of the Landau-De Gennes expression, adding an energy term proportional to the inverse quartic power of order parameter Q. This reduces the first-order discontinuity in Q. For sufficiently high disorder strength the jump disappears altogether and the phase transition becomes continuous, in some ways resembling the supercritical transitions in external field.Comment: 12 pages, 4 figures, to be published on PR

    Influence of rare regions on magnetic quantum phase transitions

    Get PDF
    The effects of quenched disorder on the critical properties of itinerant quantum magnets are considered. Particular attention is paid to locally ordered rare regions that are formed in the presence of quenched disorder even when the bulk system is still in the nonmagnetic phase. It is shown that these local moments or instantons destroy the previously found critical fixed point in the case of antiferromagnets. In the case of itinerant ferromagnets, the critical behavior is unaffected by the rare regions due to an effective long-range interaction between the order parameter fluctuations.Comment: 4 pp., REVTe

    Symmetry relation for multifractal spectra at random critical points

    Full text link
    Random critical points are generically characterized by multifractal properties. In the field of Anderson localization, Mirlin, Fyodorov, Mildenberger and Evers [Phys. Rev. Lett 97, 046803 (2006)] have proposed that the singularity spectrum f(α)f(\alpha) of eigenfunctions satisfies the exact symmetry f(2dα)=f(α)+dαf(2d-\alpha)=f(\alpha)+d-\alpha at any Anderson transition. In the present paper, we analyse the physical origin of this symmetry in relation with the Gallavotti-Cohen fluctuation relations of large deviation functions that are well-known in the field of non-equilibrium dynamics: the multifractal spectrum of the disordered model corresponds to the large deviation function of the rescaling exponent γ=(αd)\gamma=(\alpha-d) along a renormalization trajectory in the effective time t=lnLt=\ln L. We conclude that the symmetry discovered on the specific example of Anderson transitions should actually be satisfied at many other random critical points after an appropriate translation. For many-body random phase transitions, where the critical properties are usually analyzed in terms of the multifractal spectrum H(a)H(a) and of the moments exponents X(N) of two-point correlation function [A. Ludwig, Nucl. Phys. B330, 639 (1990)], the symmetry becomes H(2X(1)a)=H(a)+aX(1)H(2X(1) -a)= H(a) + a-X(1), or equivalently Δ(N)=Δ(1N)\Delta(N)=\Delta(1-N) for the anomalous parts Δ(N)X(N)NX(1)\Delta(N) \equiv X(N)-NX(1). We present numerical tests in favor of this symmetry for the 2D random QQ-state Potts model with various QQ.Comment: 15 pages, 3 figures, v2=final versio
    corecore