108 research outputs found

    A Synthetic Porcine Reproductive and Respiratory Syndrome Virus Strain Confers Unprecedented Levels of Heterologous Protection

    Get PDF
    Current vaccines do not provide sufficient levels of protection against divergent porcine reproductive and respiratory syndrome virus (PRRSV) strains circulating in the field, mainly due to the substantial variation of the viral genome. We describe here a novel approach to generate a PRRSV vaccine candidate that could confer unprecedented levels of heterologous protection against divergent PRRSV isolates. By using a set of 59 nonredundant, full-genome sequences of type 2 PRRSVs, a consensus genome (designated PRRSV-CON) was generated by aligning these 59 PRRSV full-genome sequences, followed by selecting the most common nucleotide found at each position of the alignment. Next, the synthetic PRRSV-CON strain was generated through the use of reverse genetics. PRRSV-CON replicates as efficiently as our prototype PRRSV strain FL12, both in vitro and in vivo. Importantly, when inoculated into pigs, PRRSV-CON confers significantly broader levels of heterologous protection than does wild-type PRRSV. Collectively, our data demonstrate that PRRSV-CON can serve as an excellent candidate for the development of a broadly protective PRRSV vaccine

    A synthetic porcine reproductive and respiratory syndrome unprecedented levels of heterologous protection

    Get PDF
    Current vaccines do not provide sufficient levels of protection against divergent porcine reproductive and respiratory syndrome virus (PRRSV) strains circulating in the field, mainly due to the substantial variation of the viral genome. We describe here a novel approach to generate a PRRSV vaccine candidate that could confer unprecedented levels of heterologous protection against divergent PRRSV isolates. Using a set of 59 non-redundant, full genome sequences of type-2 PRRSV, a consensus genome (designated as PRRSV-CON) was these 59 PRRSV full genome sequences, followed by selecting the most common nucleotide found at each position of the alignment. Next, the synthetic PRRSV-CON virus was generated through the use of reverse genetics. The PRRSV-CON virus replicates as efficiently as our prototype PRRSV strain FL12, both in vitro and in vivo. Importantly, when inoculated in pigs, the PRRSV-CON virus confers significantly broader levels of heterologous protection than the wild-type PRRSV. Collectively, our data demonstrates that the PRRSV-CON virus can serve as an excellent candidate for the development of a broadly protective PRRS vaccine. generated by alignin

    Description of a strain from an atypical population of Aspergillus parasiticus that produces aflatoxins B only, and the impact of temperature on fungal growth and mycotoxin production

    Get PDF
    In this study, an atypical strain of Aspergillus parasiticus is described. This strain, reported from Portuguese almonds, was named Aspergillus parasiticus B strain. The strain is herein characterised at the morphological and physiological levels, and compared with the typical A. parasiticus strain and other similar species in section Flavi. Previously published morphological and molecular data support that the B strain is very closely related to the A. parasiticus type strain. However, while A. parasiticus typically produces aflatoxins B and G, B strain produces aflatoxins B only. Furthermore, this atypical strain showed to differ from the typical strain in the fact that higher growth (colony diameter) and strain. This strain can become a major food safety concern in colder regions where the typical A. parasiticus strains are not well adapted.NORTE-07-0124-FEDER-000028PEst-OE/EQB/LA0023/2013PEst-OE/AGR/UI0690/201

    Metastable Dynamics of the Hard-Sphere System

    Full text link
    The reformulation of the mode-coupling theory (MCT) of the liquid-glass transition which incorporates the element of metastability is applied to the hard-sphere system. It is shown that the glass transition in this system is not a sharp one at the special value of the density or the packing fraction, which is in contrast to the prediction by the conventional MCT. Instead we find that the slowing down of the dynamics occurs over a range of values of the packing fraction. Consequently, the exponents governing the sequence of time relaxations in the intermediate time regime are given as functions of packing fraction with one additional parameter which describes the overall scale of the metastable potential energy for defects in the hard-sphere system. Implications of the present model on the recent experiments on colloidal systems are also discussed.Comment: 21 pages, 5 figures (available upon request), RevTEX3.0, JFI Preprint

    Incidence and diversity of the fungal genera Aspergillus and Penicillium in Portuguese almonds and chestnuts

    Get PDF
    Almonds (Prunus dulcis (Miller) D.A. Webb) and European (sweet) chestnuts (Castanea sativa Miller) are of great economic and social impact in Mediterranean countries, and in some areas they constitute the main income of rural populations. Despite all efforts to control fungal contamination, toxigenic fungi are ubiquitous in nature and occur regularly in worldwide food supplies, and these nuts are no exception. This work aimed to provide knowledge on the general mycobiota of Portuguese almonds and chestnuts, and its evolution from field to the end of storage. For this matter, 45 field chestnut samples and 36 almond samples (30 field samples and six storage samples) were collected in Trás-os-Montes, Portugal. All fungi belonging to genus Aspergillus were isolated and identified to the section level. Fungi representative of other genera were identified to the genus level. In the field, chestnuts were mainly contaminated with the genera Fusarium, Cladosporium, Alternaria and Penicillium, and the genus Aspergillus was only rarely found, whereas almonds were more contaminated with Aspergillus. In almonds, Aspergillus incidence increased significantly from field to the end of storage, but diversity decreased, with potentially toxigenic isolates belonging to sections Flavi and Nigri becoming more significant and widespread throughout storage. These fungi were determined to be moderately associated, which can be indicative of mycotoxin co-contamination problems if adequate storage conditions are not secured.P. Rodrigues was supported by grants SFRH/BD/28332/2006 from Fundacao para a Ciencia e a Tecnologia (FCT), and SFRH/PROTEC/49555/2009 from FCT and Polytechnic Institute of Braganca, Portugal

    Metastable Dynamics above the Glass Transition

    Full text link
    The element of metastability is incorporated in the fluctuating nonlinear hydrodynamic description of the mode coupling theory (MCT) of the liquid-glass transition. This is achieved through the introduction of the defect density variable nn into the set of slow variables with the mass density ρ\rho and the momentum density g{\bf g}. As a first approximation, we consider the case where motions associated with nn are much slower than those associated with ρ\rho. Self-consistently, assuming one is near a critical surface in the MCT sense, we find that the observed slowing down of the dynamics corresponds to a certain limit of a very shallow metastable well and a weak coupling between ρ\rho and nn. The metastability parameters as well as the exponents describing the observed sequence of time relaxations are given as smooth functions of the temperature without any evidence for a special temperature. We then investigate the case where the defect dynamics is included. We find that the slowing down of the dynamics corresponds to the system arranging itself such that the kinetic coefficient γv\gamma_v governing the diffusion of the defects approaches from above a small temperature-dependent value γvc\gamma^c_v.Comment: 38 pages, 14 figures (6 figs. are included as a uuencoded tar- compressed file. The rest is available upon request.), RevTEX3.0+eps

    The optic nerve head is the site of axonal transport disruption, axonal cytoskeleton damage and putative axonal regeneration failure in a rat model of glaucoma

    Get PDF
    The neurodegenerative disease glaucoma is characterised by the progressive death of retinal ganglion cells (RGCs) and structural damage to the optic nerve (ON). New insights have been gained into the pathogenesis of glaucoma through the use of rodent models; however, a coherent picture of the early pathology remains elusive. Here, we use a validated, experimentally induced rat glaucoma model to address fundamental issues relating to the spatio-temporal pattern of RGC injury. The earliest indication of RGC damage was accumulation of proteins, transported by orthograde fast axonal transport within axons in the optic nerve head (ONH), which occurred as soon as 8 h after induction of glaucoma and was maximal by 24 h. Axonal cytoskeletal abnormalities were first observed in the ONH at 24 h. In contrast to the ONH, no axonal cytoskeletal damage was detected in the entire myelinated ON and tract until 3 days, with progressively greater damage at later time points. Likewise, down-regulation of RGC-specific mRNAs, which are sensitive indicators of RGC viability, occurred subsequent to axonal changes at the ONH and later than in retinas subjected to NMDA-induced somatic excitotoxicity. After 1 week, surviving, but injured, RGCs had initiated a regenerative-like response, as delineated by Gap43 immunolabelling, in a response similar to that seen after ON crush. The data presented here provide robust support for the hypothesis that the ONH is the pivotal site of RGC injury following moderate elevation of IOP, with the resulting anterograde degeneration of axons and retrograde injury and death of somas

    Stone formation in peach fruit exhibits spatial coordination of the lignin and flavonoid pathways and similarity to Arabidopsis dehiscence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lignification of the fruit endocarp layer occurs in many angiosperms and plays a critical role in seed protection and dispersal. This process has been extensively studied with relationship to pod shatter or dehiscence in <it>Arabidopsis</it>. Dehiscence is controlled by a set of transcription factors that define the fruit tissue layers and whether or not they lignify. In contrast, relatively little is known about similar processes in other plants such as stone fruits which contain an extremely hard lignified endocarp or stone surrounding a single seed.</p> <p>Results</p> <p>Here we show that lignin deposition in peach initiates near the blossom end within the endocarp layer and proceeds in a distinct spatial-temporal pattern. Microarray studies using a developmental series from young fruits identified a sharp and transient induction of phenylpropanoid, lignin and flavonoid pathway genes concurrent with lignification and subsequent stone hardening. Quantitative polymerase chain reaction studies revealed that specific phenylpropanoid (phenylalanine ammonia-lyase and cinnamate 4-hydroxylase) and lignin (caffeoyl-CoA O-methyltransferase, peroxidase and laccase) pathway genes were induced in the endocarp layer over a 10 day time period, while two lignin genes (<it>p-</it>coumarate 3-hydroxylase and cinnamoyl CoA reductase) were co-regulated with flavonoid pathway genes (chalcone synthase, dihydroflavanol 4-reductase, leucoanthocyanidin dioxygen-ase and flavanone-3-hydrosylase) which were mesocarp and exocarp specific. Analysis of other fruit development expression studies revealed that flavonoid pathway induction is conserved in the related Rosaceae species apple while lignin pathway induction is not. The transcription factor expression of peach genes homologous to known endocarp determinant genes in <it>Arabidopsis </it>including <it>SHATTERPROOF</it>, <it>SEEDSTCK </it>and <it>NAC SECONDARY WALL THICENING PROMOTING FACTOR 1 </it>were found to be specifically expressed in the endocarp while the negative regulator <it>FRUITFU</it>L predominated in exocarp and mesocarp.</p> <p>Conclusions</p> <p>Collectively, the data suggests, first, that the process of endocarp determination and differentiation in peach and <it>Arabidopsis </it>share common regulators and, secondly, reveals a previously unknown coordination of competing lignin and flavonoid biosynthetic pathways during early fruit development.</p
    corecore