114 research outputs found

    A novel investigation into the application of non-destructive evaluation for vibration assessment and analysis of in-service pipes

    Get PDF
    Flow induced vibrations that are close to resonance frequencies are a major problem in all oil and gas processing industries, so all piping systems require regular condition monitoring and inspection to assess changes in their dynamic characteristics and structural integrity in order to prevent catastrophic failures. One of the main causes of pipe failure is weak support causing low frequency high amplitude flow-induced vibration. This causes wear and tear, especially near joints due to their dissimilar stiffness resulting in fatigue failure of joints caused by vibration-induced high cyclic stress. Other contributing factors in pipe failure are poor or inadequate design, poor workmanship during installation or maintenance and inadequate or weak and flexible support. These pipes are usually required to work non-stop for 24 hours a day 7 days a week for weeks, months or years at a time. Regular monitoring and in-service dynamic analysis should ensure continuous and safe operation. A novel method of non-destructive testing and evaluation of these pipes, while in service, is proposed in this paper. This technique will enable early detection and identification of the root causes of any impending failure due to excess vibration as a result of cyclic force induced by the flow. The method pinpoints the location of the impending failure prior to condition-based maintenance procedures. The technique relies on the combined application of Operating Deflection Shapes (ODS) analysis and computational mechanics utilizing Finite Element Analysis (FEA), i.e. linear elastic stress analysis. Any structural modification to the pipes and their supports can then be applied virtually and their effects on the system can be analysed. The effect on vibration levels is assessed and verified. The effect of any change in the forces corresponding to changes in the Differential Pressure (DP) at constant flow rate through the pipes can then be estimated. It was concluded that maintaining the differential pressure above some “critical” threshold ensures the pipe operates under the allowable dynamic stress for a theoretically “indefinite” life cycle

    The incidence of liver injury in Uyghur patients treated for TB in Xinjiang Uyghur autonomous region, China, and its association with hepatic enzyme polymorphisms nat2, cyp2e1, gstm1 and gstt1.

    Get PDF
    BACKGROUND AND OBJECTIVE: Of three first-line anti-tuberculosis (anti-TB) drugs, isoniazid is most commonly associated with hepatotoxicity. Differences in INH-induced toxicity have been attributed to genetic variability at several loci, NAT2, CYP2E1, GSTM1and GSTT1, that code for drug-metabolizing enzymes. This study evaluated whether the polymorphisms in these enzymes were associated with an increased risk of anti-TB drug-induced hepatitis in patients and could potentially be used to identify patients at risk of liver injury. METHODS AND DESIGN: In a cross-sectional study, 2244 tuberculosis patients were assessed two months after the start of treatment. Anti-TB drug-induced liver injury (ATLI) was defined as an ALT, AST or bilirubin value more than twice the upper limit of normal. NAT2, CYP2E1, GSTM1 and GSTT1 genotypes were determined using the PCR/ligase detection reaction assays. RESULTS: 2244 patients were evaluated, there were 89 cases of ATLI, a prevalence of 4% 9 patients (0.4%) had ALT levels more than 5 times the upper limit of normal. The prevalence of ATLI was greater among men than women, and there was a weak association with NAT2*5 genotypes, with ATLI more common among patients with the NAT2*5*CT genotype. The sensitivity of the CT genotype for identifying patients with ATLI was 42% and the positive predictive value 5.9%. CT ATLI was more common among slow acetylators (prevalence ratio 2.0 (95% CI 0.95,4.20) )compared to rapid acetylators. There was no evidence that ATLI was associated with CYP2E1 RsaIc1/c1genotype, CYP2E1 RsaIc1/c2 or c2/c2 genotypes, or GSTM1/GSTT1 null genotypes. CONCLUSIONS: In Xinjiang Uyghur TB patients, liver injury was associated with the genetic variant NAT2*5, however the genetic markers studied are unlikely to be useful for screening patients due to the low sensitivity and low positive predictive values for identifying persons at risk of liver injury

    Multifunctional hybrid materials based on transparent poly(methyl methacrylate) reinforced by lanthanoid hydroxo clusters

    Get PDF
    Three pentanuclear lanthanoid hydroxo clusters of composition [Ln(OH)5(abzm)10], where Ln = Eu, Tb,Ho and abzm = di(4-allyloxy)benzoylmethanide, have been prepared. The structures have beencharacterised by means of IR, Raman, elemental analyses and X-ray diffraction, showing a pyramidalsquare-based cluster core. The clusters (Tb and Ho) exhibit Curie?Weiss Law behaviour, displayingantiferromagnetic ordering at low temperatures. The emission properties of the Eu cluster demonstratethe abzm- ligand is an efficient antenna (lex = 420 nm) only for the sensitisation of Eu luminescence inthe visible range, via energy transfer to the 5D0 state of the trivalent metal. The clusters have beenreacted in the presence of methyl methacrylate and azobisisobutyronitrile to prepare reinforcedpolymers via radical polymerisation. The obtained materials exhibit swelling upon immersion intoorganic solvents up to 110% of their original size, in agreement with the presence of cluster-crosslinked polymeric chains. Also, no loss of transparency was observed in the preparation of the materials. The characteristic red emission of the Eu cluster in also retained in the polymeric material

    Home exposure to Arabian incense (bakhour) and asthma symptoms in children: a community survey in two regions in Oman

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Incense burning has been reported to adversely affect respiratory health. The aim of this study was to explore whether exposure to bakhour contributes to the prevalence of asthma and/or triggers its symptoms in Omani children by comparing two Omani regions with different prevalence of asthma.</p> <p>Methods</p> <p>A randomly selected sample of 10 years old schoolchildren were surveyed using an Arabic version of ISAAC Phase II questionnaires with the addition of questions concerning the use and effect of Arabian incense on asthma symptoms. Current asthma was defined as positive response to wheeze in the past 12 months or positive response to "ever had asthma" together with a positive response to exercise wheeze or night cough in the past 12 months. Simple and multivariable logistic regression analyses were performed to estimate the effect of bakhour exposure and other variables on current asthma diagnosis and parents' response to the question: "Does exposure to bakhour affect your child breathing?"</p> <p>Results</p> <p>Of the 2441 surveyed children, 15.4% had current asthma. Bakhour use more than twice a week was three times more likely to affect child breathing compared to no bakhour use (adjusted OR 3.01; 95% CI 2.23–4.08) and this effect was 2.55 times higher in asthmatics (adjusted OR 2.55; 95% CI 1.97–3.31) compared to non-asthmatics. In addition, bakhour caused worsening of wheeze in 38% of the asthmatics, making it the fourth most common trigger factor after dust (49.2%), weather (47.6%) and respiratory tract infections (42.2%). However, there was no significant association between bakhour use and the prevalence of current asthma (adjusted OR 0.87; 95% CI 0.63–1.20).</p> <p>Conclusion</p> <p>Arabian incense burning is a common trigger of wheezing among asthmatic children in Oman. However, it is not associated with the prevalence asthma.</p

    Environmental and genetic risk factors and gene-environment interactions in the pathogenesis of chronic obstructive lung disease.

    Get PDF
    Current understanding of the pathogenesis of chronic obstructive pulmonary disease (COPD), a source of substantial morbidity and mortality in the United States, suggests that chronic inflammation leads to the airways obstruction and parenchymal destruction that characterize this condition. Environmental factors, especially tobacco smoke exposure, are known to accelerate longitudinal decline of lung function, and there is substantial evidence that upregulation of inflammatory pathways plays a vital role in this process. Genetic regulation of both inflammatory responses and anti-inflammatory protective mechanisms likely underlies the heritability of COPD observed in family studies. In alpha-1 protease inhibitor deficiency, the only genetic disorder known to cause COPD, lack of inhibition of elastase activity, results in the parenchymal destruction of emphysema. Other genetic polymorphisms have been hypothesized to alter the risk of COPD but have not been established as causes of this condition. It is likely that multiple genetic factors interacting with each other and with a number of environmental agents will be found to result in the development of COPD
    corecore