687 research outputs found

    Behaviour of surface-active substances at the dropping mercury electrode

    Get PDF
    It is found that the differential capacity of the dropping mercury electrode is affected mainly in two ways by added surface-active substances. At about the electrocapillary zero there is a strong lowering of the capacity due to adsorption of surface-active substances. At some higher cathodic potential there is enormous increase in differential capacity leading to a maximum and is followed by a sharp fall in the capacity; the latter is due to the desorption taking place more or less sharply at the higher cathodic potentials. The theory of the phenomenon has been formulated

    Kinetics of inactivation of invertase

    Get PDF
    This article does not have an abstract

    Aging of surfaces of solutions. Part VI. Surface aging of casein solutions

    Get PDF
    This article does not have an abstract

    Fragment Flow and the Nuclear Equation of State

    Full text link
    We use the Boltzmann-Uehling-Uhlenbeck model with a momentum-dependent nuclear mean field to simulate the dynamical evolution of heavy ion collisions. We re-examine the azimuthal anisotropy observable, proposed as sensitive to the equation of state of nuclear matter. We obtain that this sensitivity is maximal when the azimuthal anisotropy is calculated for nuclear composite fragments, in agreement with some previous calculations. As a test case we concentrate on semi-central 197Au + 197Au^{197}{\rm Au}\ +\ ^{197}{\rm Au} collisions at 400 AA MeV.Comment: 12 pages, ReVTeX 3.0. 12 Postscript figures, uuencoded and appende

    Spreading of casein and derivatives

    Get PDF
    1. Casein has been spread from its aqueous solutions by different methods and it has been found that the modified band method is the most suitable for the study of protein films. 2. Effect of salts on the spreading of casein has been studied. The results obtained can be explained on the basis that two different factors, solubility and the electric charge of the protein molecule influence spreading. 3. Treatment of the protein with formaldehyde causes a decrease in spreading. Change in pH affects spreading of formolised casein to a smaller degree. 4. Sodium metaphosphate diminishes markedly the spreading of casein. Trichloracetic acid, however, has no effect. 5. Deaminisation of casein alters the spreading properties and gives unstable films on acidulated water. No films can be got on distilled water. 6. The spreading properties of an isodisperse fraction of casein have been studied. The limiting area of this fraction has been found to be of the same order as that of the original material

    Neutrons from multiplicity-selected La-La and Nb-Nb collisions at 400A MeV and La-La collisions at 250A MeV

    Full text link
    Triple-differential cross sections for neutrons from high-multiplicity La-La collisions at 250 and 400 MeV per nucleon and Nb-Nb collisions at 400 MeV per nucleon were measured at several polar angles as a function of the azimuthal angle with respect to the reaction plane of the collision. The reaction plane was determined by a transverse-velocity method with the capability of identifying charged-particles with Z=1, Z=2, and Z > 2. The flow of neutrons was extracted from the slope at mid-rapidity of the curve of the average in-plane momentum vs the center-of-mass rapidity. The squeeze-out of the participant neutrons was observed in a direction normal to the reaction plane in the normalized momentum coordinates in the center-of-mass system. Experimental results of the neutron squeeze-out were compared with BUU calculations. The polar-angle dependence of the maximum azimuthal anisotropy ratio r(θ)r(\theta) was found to be insensitive to the mass of the colliding nuclei and the beam energy. Comparison of the observed polar-angle dependence of the maximum azimuthal anisotropy ratio r(θ)r(\theta) with BUU calculations for free neutrons revealed that r(θ)r(\theta) is insensitive also to the incompressibility modulus in the nuclear equation of state.Comment: ReVTeX, 16 pages, 17 figures. To be published in Physical Review

    Radial Flow in Au+Au Collisions at E=0.25-1.15 A GeV

    Get PDF
    A systematic study of energy spectra for light particles emitted at midrapidity from Au+Au collisions at E=0.25-1.15 A GeV reveals a significant non-thermal component consistent with a collective radial flow. This component is evaluated as a function of bombarding energy and event centrality. Comparisons to Quantum Molecular Dynamics (QMD) and Boltzmann-Uehling-Uhlenbeck (BUU) models are made for different equations of state.Comment: 10 pages of text and 4 figures (all ps files in a uuencoded package)

    Quadratic optimal functional quantization of stochastic processes and numerical applications

    Get PDF
    In this paper, we present an overview of the recent developments of functional quantization of stochastic processes, with an emphasis on the quadratic case. Functional quantization is a way to approximate a process, viewed as a Hilbert-valued random variable, using a nearest neighbour projection on a finite codebook. A special emphasis is made on the computational aspects and the numerical applications, in particular the pricing of some path-dependent European options.Comment: 41 page

    The importance of initial-final state correlations for the formation of fragments in heavy ion collisions

    Get PDF
    Using quantum molecular dynamics simulations, we investigate the formation of fragments in symmetric reactions between beam energies of E=30AMeV and 600AMeV. After a comparison with existing data we investigate some observables relevant to tackle equilibration: dsigma/dErat, the double differential cross section dsigma/pt.dpz.dpt,... Apart maybe from very energetic E>400AMeV and very central reactions, none of our simulations gives evidence that the system passes through a state of equilibrium. Later, we address the production mechanisms and find that, whatever the energy, nucleons finally entrained in a fragment exhibit strong initial-final state correlations, in coordinate as well as in momentum space. At high energy those correlations resemble the ones obtained in the participant-spectator model. At low energy the correlations are equally strong, but more complicated; they are a consequence of the Pauli blocking of the nucleon-nucleon collisions, the geometry, and the excitation energy. Studying a second set of time-dependent variables (radii, densities,...), we investigate in details how those correlations survive the reaction especially in central reactions where the nucleons have to pass through the whole system. It appears that some fragments are made of nucleons which were initially correlated, whereas others are formed by nucleons scattered during the reaction into the vicinity of a group of previously correlated nucleons.Comment: 45 pages text + 20 postscript figures Accepted for publication in Physical Review

    The Acute Effects of the Atypical Dissociative Hallucinogen Salvinorin A on Functional Connectivity in the Human Brain

    Get PDF
    Salvinorin A (SA) is a Îş-opioid receptor agonist and atypical dissociative hallucinogen found in Salvia divinorum. Despite the resurgence of hallucinogen studies, the effects of Îş-opioid agonists on human brain function are not well-understood. This placebo-controlled, within-subject study used functional magnetic resonance imaging for the first time to explore the effects of inhaled SA on strength, variability, and entropy of functional connectivity (static, dynamic, and entropic functional connectivity, respectively, or sFC, dFC, and eFC). SA tended to decrease within-network sFC but increase between-network sFC, with the most prominent effect being attenuation of the default mode network (DMN) during the first half of a 20-min scan (i.e., during peak effects). SA reduced brainwide dFC but increased brainwide eFC, though only the former effect survived multiple comparison corrections. Finally, using connectome-based classification, most models trained on dFC network interactions could accurately classify the first half of SA scans. In contrast, few models trained on within- or between-network sFC and eFC performed above chance. Notably, models trained on within-DMN sFC and eFC performed better than models trained on other network interactions. This pattern of SA effects on human brain function is strikingly similar to that of other hallucinogens, necessitating studies of direct comparisons
    • …
    corecore