44 research outputs found

    La ß-catĂ©nine et le NF-Kß coopĂšrent pour rĂ©guler le systĂšme uPA/uPAR dans des cellules tumorale

    No full text
    PARIS7-BibliothĂšque centrale (751132105) / SudocSudocFranceF

    Human platelet suspension stimulates porcine retinal glial proliferation and migration in vitro. Invest Ophthalmol Vis Sci.

    No full text
    PURPOSE. To characterize the cellular and molecular mechanisms underlying the efficacy of autologous platelet suspension adjuvant therapy in the treatment of macular hole. METHODS. Platelet suspensions were prepared from whole blood samples obtained from informed volunteers. For proliferation assays, platelet suspensions or purified growth factors were added to semi-confluent cultures of porcine retinal glial cells for 24 hours, followed by [ 3 H]thymidine for 15 hours, after which time cells were washed, solubilized, and counted for uptake of radioactive tracer. For cell migration assays, confluent glial cultures were scrape wounded and maintained in the presence or absence of platelet suspension or identified platelet constituents. Cell migration into the denuded area was scored as a function of time. In certain cases, specific pharmacologic inhibitors of growth factor action were added at the same time as platelet adjuvant or growth factors. RESULTS. Platelet suspension adjuvant induced strong mitogenic and chemotactic responses in cultured glia, in a dose-dependent manner. Maximal incorporation of thymidine was two-to threefold that of control levels, with an ED 50 Ïł5 Ï« 10 6 platelets/ml, and migration was enhanced up to 80-fold after 48 hours. Platelet suspension-induced proliferation was completely blocked by addition of 25 M genistein, a tyrosine kinase receptor inhibitor. However, the same concentration only partially blocked the cell migration response. Addition of any single growth factor or protein identified from ELISA analysis, or a combination of all factors, did not significantly stimulate proliferation or cell migration. CONCLUSIONS. Human platelet suspensions exert both proliferative and chemotactic influences on retinal glial cells in vitro, suggesting that the same responses may occur in platelet-induced macular hole repair in humans. Growth factors or proteins that have been identified within the suspensions do not mimic these responses in vitro, implying that additional currently unidentified trophic activities are also present. (Invest Ophthalmol Vis Sci. 2000;41:601-609

    Eugenics and medicalized reproduction Conceptual, historical, medical, and ethical considerations

    No full text
    Memo by the Inserm Ethics Committee. Embryo and Developmental Group. Written by: Bernard Baertschi and Pierre Jouannet.The classic eugenics of the late 19th century sought to improve the human race by relying on the coercive power of the state. This practice has been discredited, but it is sometimes argued that “liberal” or “private” eugenics has outlived it, particularly in the context of medically assisted reproduction (MAR). Indeed couples can resort to in vitro fertilization (IVF) when they wish to have a child who does not have certain serious genetic diseases in the name of reproductive freedom and the interest of the unborn child.“Liberal” or “private” eugenics is currently the subject of much debate. The main arguments underlying the current thinking are as follows: (a) even if the aim (not having a child with a serious genetic disease) is laudable, not all means of achieving it are necessarily so; (b) by choosing which embryo(s) to transfer, a choice is made as to the people who deserve to exist; (c) there is a risk of applying arbitrary or even immoral selection criteria; (d) some MAR practices involve the transmission of genetic mutations or chromosomal abnormalities (dysgenics); (e) the practice of genetic testing with the aim of choosing embryos without genetic diseases expresses a stigmatizing attitude towards people with disabilities (expressivist argument); (f) couples and the medical institution have a moral duty not to transfer an embryo carrying a deleterious gene; (g) couples are under a great deal of pressure to undergo testing, a pressure that could undermine their autonomy and their ability to choose freely; (h) the good of the child, a cardinal ethical and legal consideration, could be threatened by “private” eugenics; and (i) an alternative to embryo selection could be germline gene therapy, which is currently prohibited.Today, genetic testing and criteria can be used in a wide variety of ways whenreproduction is medicalized. These may include genetic factors sought in gamete and embryo donors to avoid the transmission to the child of a genetic pathology when the risk is known; chromosomal analysis of embryos to avoid transferring into the uterus those that will not develop to term; a preimplantation diagnosis on the embryos to avoid transmitting to the offspring genetic characteristics of the future parents that are likely to seriously harm the health of the unborn child; selection of embryos on the basis of polygenic scores to detect those less at risk of developing a pathology after birth; and selection of the child’s sex without any medical indication.Male sterility, for example, may be due to a chromosomal factor (Y-chromosome microdeletion) or a genic factor (mutations of the CFTR gene or genes involved in spermatogenesis). When spermatozoa can be used in ICSI, sterility can be bypassed, but chromosomal or genic modifications can be transmitted to offspring and cause sterility in boys. If no spermatozoa are available, an in vitro correction of the defective gene by genomic engineering in germ cells could be considered for the treatment of male infertility.As classical eugenics has been unanimously discredited, labeling a practice as eugenist is tantamount to condemning it. The law is currently doing the same. However, this was not always the case: before World War II, it was often viewed positively.The notion of eugenics was therefore devised at a time when genetics, in the sense of determinism and the process of transmitting inheritable traits, was not yet understood. Nowadays, a return to “genetic determinism” or “genetic program” sometimes resurfaces, often simplistically or erroneously based on the most recent data from knowledge acquired in genetics.The cumulative effect of couples’ decisions has some effect on the composition of future generations, albeit quantitatively minimal. However, there is no eugenist intention as such. A distinction must therefore be made between eugenics as a consequence and intentional eugenics. The first is not truly eugenics, so the term “eugenist” should be used only for interventions that promote the deliberate, intentional transmission of genetic traits or characteristics to offspring

    Note « L'eugénisme et la procréation médicalisée. Considérations conceptuelles, historiques, médicales et éthiques »

    No full text
    Memo by the Inserm Ethics Committee. Embryo and Developmental Group. Written by: Bernard Baertschi and Pierre Jouannet.L’eugĂ©nisme classique de la fin du XIXe siĂšcle voulait amĂ©liorer le genre humain en misant sur le pouvoir coercitif de l’État. Cette pratique a Ă©tĂ© discrĂ©ditĂ©e, mais il est parfois avancĂ© qu’un eugĂ©-nisme « libĂ©ral » ou « privĂ© » lui a survĂ©cu, notamment dans le cadre de l’assistance mĂ©dicale Ă  la procrĂ©ation (AMP). En effet, au nom de la libertĂ© procrĂ©ative et de l’intĂ©rĂȘt de l’enfant Ă  naĂźtre, les couples peuvent recourir Ă  la fĂ©condation in vitro (FIV) quand ils dĂ©sirent avoir un enfant qui ne soit pas atteint de certaines maladies gĂ©nĂ©tiques graves.L’eugĂ©nisme « libĂ©ral » ou « privĂ© » est actuellement fortement discutĂ©. Les principaux ar-guments alimentant la rĂ©flexion actuelle sont les suivants: (a) mĂȘme si le but visĂ© (ne pas avoir d’enfant atteint de maladie gĂ©nĂ©tique grave) est louable, tous les moyens de l’atteindre ne le sont pas nĂ©cessairement; (b) en choisissant quel(s) embryon(s) transfĂ©rer, on sĂ©lectionne les personnes qui mĂ©ritent d’exister; (c) on risque d’appliquer des critĂšres de choix arbitraires, voire immoraux; (d) certaines pratiques d’AMP impliquent la transmission de mutations gĂ©nĂ©tiques ou d’anomalies chromosomiques (le dysgĂ©nisme); (e) la pratique des tests gĂ©nĂ©tiques dans le but de choisir des em-bryons non affectĂ©s par une maladie gĂ©nĂ©tique exprime une attitude stigmatisante vis-Ă -vis des per-sonnes handicapĂ©es (argument expressiviste); (f) les couples et l’institution mĂ©dicale ont le devoir moral de ne pas transfĂ©rer un embryon porteur d’un gĂšne dĂ©lĂ©tĂšre; (g) les couples sont soumis Ă  une forte pression qui les pousse Ă  recourir Ă  des tests, pression qui pourrait mettre Ă  mal leur autonomie et leur capacitĂ© Ă  choisir librement; (h) le bien de l’enfant, considĂ©ration cardinale pour l’éthique et le droit, pourrait ĂȘtre menacĂ© par l’eugĂ©nisme « privĂ© »; et (i) une alternative Ă  la sĂ©lection des embryons pourrait ĂȘtre la thĂ©rapie gĂ©nique germinale, actuellement interdite.À l’heure actuelle, l’utilisation de tests et de critĂšres gĂ©nĂ©tiques peut intervenir de maniĂšre trĂšs variĂ©e quand la procrĂ©ation est mĂ©dicalisĂ©e. Il peut s’agir de facteurs gĂ©nĂ©tiques recherchĂ©s chez les donneurs de gamĂštes et d’embryons pour Ă©viter la transmission Ă  l’enfant d’une pathologie gĂ©nĂ©tique quand le risque est connu; d’une analyse chromosomique des embryons pour Ă©viter de transfĂ©rer dans l’utĂ©rus ceux dont on sait qu’il ne se dĂ©velopperont pas jusqu’à terme; d’un diagnostic prĂ©implantatoire sur les embryons pour Ă©viter de transmettre Ă  la descendance des caractĂšres gĂ©nĂ©tiques dont les futurs parents sont porteurs et qui sont susceptibles de porter gravement atteinte Ă  la santĂ© de l’enfant Ă  naĂźtre; de sĂ©lectionner les embryons sur la base de scores polygĂ©niques pour dĂ©tecter ceux qui seraient moins Ă  risque de dĂ©velopper une pathologie aprĂšs la naissance; de choisir le sexe de son enfant en dehors de toute indication mĂ©dicale.La stĂ©rilitĂ© masculine, par exemple, peut ĂȘtre due Ă  un facteur chromosomique (micro-dĂ©lĂ©-tion du chromosome Y) ou gĂ©nique (mutations du gĂšne CFTR ou de gĂšnes impliquĂ©s dans le bon dĂ©roulement de la spermatogenĂšse). Quand des spermatozoĂŻdes peuvent ĂȘtre utilisĂ©s par ICSI, la stĂ©rilitĂ© peut ĂȘtre contournĂ©e, mais les modifications chromosomiques ou gĂ©niques peuvent ĂȘtre transmises Ă  la descendance et ĂȘtre responsables de stĂ©rilitĂ© chez les garçons. Si aucun spermato-zoĂŻde n’est disponible, une correction in vitro du gĂšne dĂ©faillant par ingĂ©nierie gĂ©nomique au ni-veau des cellules germinales pourrait ĂȘtre envisagĂ©e pour traiter l’infertilitĂ© masculine.L’eugĂ©nisme classique Ă©tant unanimement discrĂ©ditĂ©, taxer une pratique d’eugĂ©niste revient Ă  la condamner. Le droit fait actuellement de mĂȘme. Mais cela n’a pas toujours Ă©tĂ© le cas: avant la 2e guerre mondiale, il Ă©tait souvent considĂ©rĂ© positivement.La notion d’eugĂ©nisme a donc Ă©tĂ© forgĂ©e Ă  une Ă©poque oĂč la gĂ©nĂ©tique, au sens du dĂ©termi-nisme et du processus de transmission des caractĂšres hĂ©ritables, n’était pas encore comprise et de nos jours, un retour du « tout gĂ©nĂ©tique » ou du « programme gĂ©nĂ©tique » refait parfois surface, en s’appuyant le plus souvent de maniĂšre simpliste ou erronĂ©e sur les donnĂ©es les plus rĂ©centes des connaissances acquises en gĂ©nĂ©tique.L’effet cumulĂ© des dĂ©cisions des couples a un certain effet sur la composition des gĂ©nĂ©rations futures, quoique quantitativement minime. Il n’y prĂ©side toutefois aucune intention eugĂ©niste pro-prement dite. Il faut donc distinguer l’eugĂ©nisme en consĂ©quence et l’eugĂ©nisme intentionnel. Le premier n’est pas vĂ©ritablement un eugĂ©nisme, si bien que le terme « eugĂ©niste » ne devrait ĂȘtre employĂ© que pour les interventions favorisant la transmission dĂ©libĂ©rĂ©e et intentionnelle de traits ou caractĂšres gĂ©nĂ©tiques Ă  la descendance

    From Embryo Research to Therapy

    No full text
    Note from the Inserm Ethics Committee. "Embryo and Developmental Research" grou
    corecore