186 research outputs found

    The Effect of Vitamin C on HeLa Cell Proliferation

    Get PDF
    In this study, we investigated the impact of vitamin C on cervical cancer cells at varying concentrations. After adding vitamin C reagent to plated HeLa cells, we performed cytotoxicity assays to measure cell viability. We hypothesized that higher concentrations of vitamin C would lead to lower cell viability, as vitamin C is predicted to cause cell death in cancer cells. Our results indicated that higher concentrations of vitamin C do not necessarily correlate with lower cell viability of cervical cancer cells

    Signatures of two-photon pulses from a quantum two-level system

    No full text

    Observation of mollow triplets with tunable interactions in double lambda systems of individual hole spins

    Get PDF
    Although individual spins in quantum dots have been studied extensively as qubits, their investigation under strong resonant driving in the scope of accessing Mollow physics is still an open question. Here, we have grown high quality positively charged quantum dots embedded in a planar microcavity that enable enhanced light-matter interactions. Under a strong magnetic field in the Voigt configuration, individual positively charged quantum dots provide a double lambda level structure. Using a combination of above-band and resonant excitation, we observe the formation of Mollow triplets on all optical transitions. We find that when the strong resonant drive power is used to tune the Mollow-triplet lines through each other, we observe anticrossings. We also demonstrate that the interaction that gives rise to the anticrossings can be controlled in strength by tuning the polarization of the resonant laser drive. Quantum-optical modeling of our system fully captures the experimentally observed spectra and provides insight on the complicated level structure that results from the strong driving of the double lambda system

    Ultrafast coherent manipulation of trions in site-controlled nanowire quantum dots

    Get PDF
    Physical implementations of large-scale quantum processors based on solid-state platforms benefit from realizations of quantum bits positioned in regular arrays. Self-assembled quantum dots are well established as promising candidates for quantum optics and quantum information processing, but they are randomly positioned. Site-controlled quantum dots, on the other hand, are grown in pre-defined locations but have not yet been sufficiently developed to be used as a platform for quantum information processing. In this paper, we demonstrate all-optical ultrafast complete coherent control of a qubit formed by the single-spin/trion states of a charged site-controlled nanowire quantum dot. Our results show that site-controlled quantum dots in nanowires are promising hosts of charged-exciton qubits and that these qubits can be cleanly manipulated in the same fashion as has been demonstrated in randomly positioned quantum dot samples. Our findings suggest that many of the related excitonic qubit experiments that have been performed over the past 15 years may work well in the more scalable, site-controlled systems, making them very promising for the realization of quantum hardware

    Sorption of hydrophobic compounds by sediments, soils and suspended solids--II. Sorbent evaluation studies

    Full text link
    Concepts underlying the sorption of hydrophobic compounds and models for representation of observed equilibrium relationships were presented in Part I of this series. The earlier paper also summarized and evaluated major factors which affect the sorption of pollutants in natural environmental systems. This second part of the series presents a detailed summary and evaluation of the sorption of a particular class of hydrophobic pollutants, polychlorinated biphenyls (PCB), on a variety of different types of sediments, soils, suspended solids, and microorganisms. Equilibrium models described in Part I are used here to describe and analyze the PCB sorption data.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/25453/1/0000903.pd

    Preventing Falls in Older Californians: State of the Art

    Get PDF
    In February 2003, the Foundation convened over 150 leaders in academic, legislative, community-based services, consumer advocates, aging network, housing, public health, public safety, and other leaders who worked for two days on a statewide blueprint on fall prevention.  In preparation for the convening, a Preconference White Paper was created and used to build the blueprint.  The California Blueprint describes state-of-the-art approaches to reducing the risks of falls, and the challenges to implementing fall prevention in California.  One of the top recommendations from this blueprint was the creation of a coordination center that could serve as a statewide resource and lead efforts in fall prevention.  This recommendation eventually led to the creation of the Fall Prevention Center of Excellence (FPCE)

    PPARγ1 and LXRα face a new regulator of macrophage cholesterol homeostasis and inflammatory responsiveness, AEBP1

    Get PDF
    Peroxisome proliferator-activated receptor γ1 (PPARγ1) and liver X receptor α (LXRα) are nuclear receptors that play pivotal roles in macrophage cholesterol homeostasis and inflammation; key biological processes in atherogenesis. The activation of PPARγ1 and LXRα by natural or synthetic ligands results in the transactivation of ABCA1, ABCG1, and ApoE; integral players in cholesterol efflux and reverse cholesterol transport. In this review, we describe the structure, isoforms, expression pattern, and functional specificity of PPARs and LXRs. Control of PPARs and LXRs transcriptional activity by coactivators and corepressors is also highlighted. The specific roles that PPARγ1 and LXRα play in inducing macrophage cholesterol efflux mediators and antagonizing macrophage inflammatory responsiveness are summarized. Finally, this review focuses on the recently reported regulatory functions that adipocyte enhancer-binding protein 1 (AEBP1) exerts on PPARγ1 and LXRα transcriptional activity in the context of macrophage cholesterol homeostasis and inflammation

    Frequency-resolved Monte Carlo

    Get PDF
    We adapt the Quantum Monte Carlo method to the cascaded formalism of quantum optics, allowing us to simulate the emission of photons of known energy. Statistical processing of the photon clicks thus collected agrees with the theory of frequency-resolved photon correlations, extending the range of applications based on correlations of photons of prescribed energy, in particular those of a photon-counting character. We apply the technique to autocorrelations of photon streams from a two-level system under coherent and incoherent pumping, including the Mollow triplet regime where we demonstrate the direct manifestation of leapfrog processes in producing an increased rate of two-photon emission events
    corecore