176 research outputs found

    Downregulation of Mcl-1 has anti-inflammatory pro-resolution effects and enhances bacterial clearance from the lung

    Get PDF
    Phagocytes not only coordinate acute inflammation and host defense at mucosal sites, but also contribute to tissue damage. Respiratory infection causes a globally significant disease burden and frequently progresses to acute respiratory distress syndrome, a devastating inflammatory condition characterized by neutrophil recruitment and accumulation of protein-rich edema fluid causing impaired lung function. We hypothesized that targeting the intracellular protein myeloid cell leukemia 1 (Mcl-1) by a cyclin-dependent kinase inhibitor (AT7519) or a flavone (wogonin) would accelerate neutrophil apoptosis and resolution of established inflammation, but without detriment to bacterial clearance. Mcl-1 loss induced human neutrophil apoptosis, but did not induce macrophage apoptosis nor impair phagocytosis of apoptotic neutrophils. Neutrophil-dominant inflammation was modelled in mice by either endotoxin or bacteria (Escherichia coli). Downregulating inflammatory cell Mcl-1 had anti-inflammatory, pro-resolution effects, shortening the resolution interval (R(i)) from 19 to 7 h and improved organ dysfunction with enhanced alveolar–capillary barrier integrity. Conversely, attenuating drug-induced Mcl-1 downregulation inhibited neutrophil apoptosis and delayed resolution of endotoxin-mediated lung inflammation. Importantly, manipulating lung inflammatory cell Mcl-1 also accelerated resolution of bacterial infection (R(i); 50 to 16 h) concurrent with enhanced bacterial clearance. Therefore, manipulating inflammatory cell Mcl-1 accelerates inflammation resolution without detriment to host defense against bacteria, and represents a target for treating infection-associated inflammation

    Landholder Typologies Used in the Development of Natural Resource Management Programs in Australia - A Review

    Get PDF
    This article reviews the literature on the identification of landholder typologies that can be used to assist the design and delivery of natural resource management (NRM) programs. Australian researchers have developed typologies of landholders based on a variety of criteria. The rationale for developing landholder typologies is first discussed before reviewing the various approaches that have been used by Australian researchers and comparing their findings. The methods employed have differed according to the theories used to guide the research and the 'clients' or 'sponsors' of the research. The landholder types they describe, however, have a number of similarities. These similarities suggest that the studies have identified the same fundamental divisions in the rural community, and that it may be possible to integrate landholder typologies for a variety of NRM and non-NRM applications. It is concluded that further research could usefully investigate whether concepts of social class or sub-cultures may be appropriate to define and describe the variations in landholder types

    Efficacy of a Non-Hypercalcemic Vitamin-D2 Derived Anti-Cancer Agent (MT19c) and Inhibition of Fatty Acid Synthesis in an Ovarian Cancer Xenograft Model

    Get PDF
    BACKGROUND:Numerous vitamin-D analogs exhibited poor response rates, high systemic toxicities and hypercalcemia in human trials to treat cancer. We identified the first non-hypercalcemic anti-cancer vitamin D analog MT19c by altering the A-ring of ergocalciferol. This study describes the therapeutic efficacy and mechanism of action of MT19c in both in vitro and in vivo models. METHODOLOGY/PRINCIPAL FINDING:Antitumor efficacy of MT19c was evaluated in ovarian cancer cell (SKOV-3) xenografts in nude mice and a syngenic rat ovarian cancer model. Serum calcium levels of MT19c or calcitriol treated animals were measured. In-silico molecular docking simulation and a cell based VDR reporter assay revealed MT19c-VDR interaction. Genomewide mRNA analysis of MT19c treated tumors identified drug targets which were verified by immunoblotting and microscopy. Quantification of cellular malonyl CoA was carried out by HPLC-MS. A binding study with PPAR-Y receptor was performed. MT19c reduced ovarian cancer growth in xenograft and syngeneic animal models without causing hypercalcemia or acute toxicity. MT19c is a weak vitamin-D receptor (VDR) antagonist that disrupted the interaction between VDR and coactivator SRC2-3. Genome-wide mRNA analysis and western blot and microscopy of MT19c treated xenograft tumors showed inhibition of fatty acid synthase (FASN) activity. MT19c reduced cellular levels of malonyl CoA in SKOV-3 cells and inhibited EGFR/phosphoinositol-3kinase (PI-3K) activity independently of PPAR-gamma protein. SIGNIFICANCE:Antitumor effects of non-hypercalcemic agent MT19c provide a new approach to the design of vitamin-D based anticancer molecules and a rationale for developing MT19c as a therapeutic agent for malignant ovarian tumors by targeting oncogenic de novo lipogenesis

    Safety perspectives on presently considered drugs for the treatment of COVID‐19

    Get PDF
    Intense efforts are underway to evaluate potential therapeutic agents for the treatment of COVID‐19. In order to respond quickly to the crisis, the repurposing of existing drugs is the primary pharmacological strategy. Despite the urgent clinical need for these therapies, it is imperative to consider potential safety issues. This is important due to the harm–benefit ratios that may be encountered when treating COVID‐19, which can depend on the stage of the disease, when therapy is administered and underlying clinical factors in individual patients. Treatments are currently being trialled for a range of scenarios from prophylaxis (where benefit must greatly exceed risk) to severe life‐threatening disease (where a degree of potential risk may be tolerated if it is exceeded by the potential benefit). In this perspective, we have reviewed some of the most widely researched repurposed agents in order to identify potential safety considerations using existing information in the context of COVID‐19

    CSF Rhinorrhea After Endonasal Intervention to the Skull Base (CRANIAL) — Part 2:Impact of COVID-19

    Get PDF
    Background During the pandemic, there has been a concern about the increased risk of perioperative mortality for patients with COVID-19, and the transmission risk to healthcare workers, particularly during endonasal neurosurgical operations. The Pituitary Society produced recommendations to guide management during this era. We sought to assess contemporary neurosurgical practice and the impact of COVID-19. Methods A multicentre, prospective, observational cohort study was conducted at twelve tertiary neurosurgical units (UK and Ireland). Data were collected from March 23rd-July 31st, 2020 inclusive. Data points collected were patient demographics, pre-operative COVID-19 testing, intra-operative operative modifications, and 30-day COVID infection rates. Results 124 patients were included. 116 patients (n=116/124, 94%) underwent COVID-19 testing pre-operatively (TSA: 97/105, 92%; EEA: 19/19, 100%). One patient (n=1/115, 1%) tested positively for COVID-19 pre-operatively, requiring a delay of operation until the infection was confirmed as resolved. Asides from transient diabetes insipidus; no other complications were reported for this case. All theatre staff wore at least level 2 PPE. Adaptations to surgical techniques included minimising drilling, draping modifications, and using nasal iodine wash. At 30 days postoperatively, there was no evidence of COVID infection (symptoms or on formal testing) in our cohort, and no mortality. Conclusions Preoperative screening protocols and operative modifications have facilitated endonasal neurosurgery during the COVID-19 pandemic, with Pituitary Society guidelines followed for the majority of these operations. There was no evidence of COVID infection in our cohort, and no mortality, supporting the use of risk mitigation strategies to continue endonasal neurosurgery in subsequent pandemic waves

    Randomized controlled trial of molnupiravir SARS-CoV-2 viral and antibody response in at-risk adult outpatients

    Get PDF
    Viral clearance, antibody response and the mutagenic effect of molnupiravir has not been elucidated in at-risk populations. Non-hospitalised participants within 5 days of SARS-CoV-2 symptoms randomised to receive molnupiravir (n = 253) or Usual Care (n = 324) were recruited to study viral and antibody dynamics and the effect of molnupiravir on viral whole genome sequence from 1437 viral genomes. Molnupiravir accelerates viral load decline, but virus is detectable by Day 5 in most cases. At Day 14 (9 days post-treatment), molnupiravir is associated with significantly higher viral persistence and significantly lower anti-SARS-CoV-2 spike antibody titres compared to Usual Care. Serial sequencing reveals increased mutagenesis with molnupiravir treatment. Persistence of detectable viral RNA at Day 14 in the molnupiravir group is associated with higher transition mutations following treatment cessation. Viral viability at Day 14 is similar in both groups with post-molnupiravir treated samples cultured up to 9 days post cessation of treatment. The current 5-day molnupiravir course is too short. Longer courses should be tested to reduce the risk of potentially transmissible molnupiravir-mutated variants being generated. Trial registration: ISRCTN3044803

    CSF Rhinorrhoea After Endonasal Intervention to the Skull Base (CRANIAL) - Part 1: Multicenter Pilot Study

    Get PDF
    Background: CRANIAL (CSF Rhinorrhoea After Endonasal Intervention to the Skull Base) is a prospective, multicentre observational study seeking to determine: (1) the scope of skull base repair methods used; and (2) corresponding rates of postoperative CSF rhinorrhoea in endonasal transsphenoidal (TSA) expanded endonasal approaches (EEA) for skull base tumours. We sought to pilot the project - assessing the feasibility and acceptability by gathering preliminary data. / Methods: A prospective, observational cohort pilot study was carried out at twelve tertiary UK neurosurgical units. Feedback regarding project positives and challenges were qualitatively analysed. / Results: 187 cases were included, 159 TSA (85%) and 28 EEA (15%). The most common pathologies included: pituitary adenomas (n=141/187), craniopharyngiomas (n=13/187) and skull-base meningiomas (n=4/187). The most common skull base repair techniques used were tissue glues (n=132/187, most commonly Tisseel®), grafts (n=94/187, most commonly fat autograft or Spongostan™) and vascularised flaps (n=51/187, most commonly nasoseptal). These repairs were most frequently supported by nasal packs (n=125/187) and lumbar drains (n=22/187). Biochemically-confirmed CSF rhinorrhoea occurred in 6/159 (3.8%) TSA and 2/28 (7.1%) EEA. Four TSA (3%) and two EEA (7%) cases required operative management for CSF rhinorrhoea (CSF diversion or direct repair). Qualitative feedback was largely positive (themes included: user-friendly and efficient data collection, strong support from senior team members) demonstrating acceptability. / Conclusions: Our pilot experience highlights the acceptability and feasibility of CRANIAL. There is a precedent for multicentre dissemination of this project, in order to establish a benchmark of contemporary skull base neurosurgery practice, particularly with respect to EEA cases

    CSF Rhinorrhoea After Endonasal Intervention to the Skull Base (CRANIAL) - Part 1:Multicenter Pilot Study

    Get PDF
    Background CRANIAL (CSF Rhinorrhoea After Endonasal Intervention to the Skull Base) is a prospective, multicentre observational study seeking to determine: (1) the scope of skull base repair methods used; and (2) corresponding rates of postoperative CSF rhinorrhoea in endonasal transsphenoidal (TSA) expanded endonasal approaches (EEA) for skull base tumours. We sought to pilot the project - assessing the feasibility and acceptability by gathering preliminary data. Methods A prospective, observational cohort pilot study was carried out at twelve tertiary UK neurosurgical units. Feedback regarding project positives and challenges were qualitatively analysed. Results 187 cases were included, 159 TSA (85%) and 28 EEA (15%). The most common pathologies included: pituitary adenomas (n=141/187), craniopharyngiomas (n=13/187) and skull-base meningiomas (n=4/187). The most common skull base repair techniques used were tissue glues (n=132/187, most commonly Tisseel®), grafts (n=94/187, most commonly fat autograft or Spongostan™) and vascularised flaps (n=51/187, most commonly nasoseptal). These repairs were most frequently supported by nasal packs (n=125/187) and lumbar drains (n=22/187). Biochemically-confirmed CSF rhinorrhoea occurred in 6/159 (3.8%) TSA and 2/28 (7.1%) EEA. Four TSA (3%) and two EEA (7%) cases required operative management for CSF rhinorrhoea (CSF diversion or direct repair). Qualitative feedback was largely positive (themes included: user-friendly and efficient data collection, strong support from senior team members) demonstrating acceptability. Conclusions Our pilot experience highlights the acceptability and feasibility of CRANIAL. There is a precedent for multicentre dissemination of this project, in order to establish a benchmark of contemporary skull base neurosurgery practice, particularly with respect to EEA cases. Keywords Cerebrospinal fluid rhinorrhoeaCSFCerebrospinal fluid leakskull base surgeryendoscopic endonasalEE

    A plasmid DNA-launched SARS-CoV-2 reverse genetics system and coronavirus toolkit for COVID-19 research

    Get PDF
    The recent emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the underlying cause of Coronavirus Disease 2019 (COVID-19), has led to a worldwide pandemic causing substantial morbidity, mortality, and economic devastation. In response, many laboratories have redirected attention to SARS-CoV-2, meaning there is an urgent need for tools that can be used in laboratories unaccustomed to working with coronaviruses. Here we report a range of tools for SARS-CoV-2 research. First, we describe a facile single plasmid SARS-CoV-2 reverse genetics system that is simple to genetically manipulate and can be used to rescue infectious virus through transient transfection (without in vitro transcription or additional expression plasmids). The rescue system is accompanied by our panel of SARS-CoV-2 antibodies (against nearly every viral protein), SARS-CoV-2 clinical isolates, and SARS-CoV-2 permissive cell lines, which are all openly available to the scientific community. Using these tools, we demonstrate here that the controversial ORF10 protein is expressed in infected cells. Furthermore, we show that the promising repurposed antiviral activity of apilimod is dependent on TMPRSS2 expression. Altogether, our SARS-CoV-2 toolkit, which can be directly accessed via our website at https://mrcppu-covid.bio/, constitutes a resource with considerable potential to advance COVID-19 vaccine design, drug testing, and discovery science
    corecore