6 research outputs found

    Microscale Wind Assessment, Comparing Mesoscale Information and Observed Wind Data

    Get PDF
    One of the most common problems in wind resource assessment is that measured data are not always available at the site of interest. That is why, in several studies, reanalysis data have been used as an alternative, which, in some cases, have been validated by measured data. Mexico is no exception, since there are not many measurement towers in the country that provide valid records throughout the country. In view of the above, in this study a comparison was made between the measurements observed in six anemometric towers, located in different locations in the United Mexican States; data from the MERRA-2 and ERA-5 reanalysis; and data from the generalized wind climates (GWC), available in the Global Wind Atlas. The study was conducted at 80 m, which is the highest height at which data were recorded on the measurement towers at each site. In the case of the MERRA-2 and ERA-5 data, extrapolation of the data series to 80 m was required. In the case of the towers, a comparison of the two data sets measured at 80 m and the height at which two anemometers were available, was performed. This analysis was supported by Windographer version 4 software designed by the company UL solutions, from which *.tab files were exported at 80 m, which were then imported from the WAsP 10.0 program to perform the microscale modeling. The comparison variable was the mean power density, for which the relative deviations between the measured values and those obtained from the reanalysis data and the GWCs were determined. For a better interpretation of the relative errors calculated, an analysis of the orographic characteristics of all the sites was performed using the roughness index (RIX). The results obtained showed that the behavior of the reanalysis and the GWC data was not homogeneous in the sites studied; therefore, an adequate relationship between the magnitudes of the ΔRIX and the relative deviations was not observed, especially for the ERA5 and GWC. The ERA5 data were the furthest from the measured data, with relative deviations greater than 50% at five of the six sites; however, the MERRA-2 and GWC data were the closest to the measured data. The MERRA-2 data showed deviations of less than 11%, except at the La Venta site, where it was 29.5%—a site where the GWC also had a high deviation of 139.4%. The latter is attributable to the effects caused by the nearby wind farms on the wind flow measured by the La Venta station. In general, the MERRA-2 data are an alternative to performing a pre-analysis of the wind resource in Mexico

    Harnessing Offshore Wind Energy along the Mexican Coastline in the Gulf of Mexico—An Exploratory Study including Sustainability Criteria

    Get PDF
    Mexico has more than 40 years of researching, investing, and obtaining electric power through wind energy. Within the country, there are highly windy areas, such as the Isthmus of Tehuantepec or the state of Tamaulipas, and there are about 2500 MW installed and 70,000 MW tested, all onshore. There are still no offshore wind farms in Mexico, despite having two main coasts, the East and the West, with the Gulf of Mexico and the Pacific Ocean, respectively. Although the Mexican coastal states of the Gulf of Mexico are Tamaulipas, Veracruz, Tabasco, Campeche, and Yucatán, this work focuses on the study and feasibility of offshore wind energy use on the coasts of the states of Tabasco, Campeche, and Yucatán. This is because of the availability of data in that region; however, sustainability criteria that can be used in other regions are also presented. MERRA-2 and ERA5 data were used employing WAsP and Windographer software. It was found that the capacity factor in the area of Tabasco, Campeche, and Yucatán is 32%, 37%, and 46%. It can be noted that, in the WF100% scenario, each of the wind farms could contribute more than 35% of the region’s electricity consumption; those of Campeche and Yucatán stand out with contributions of more than 70%

    Fourier Analysis for Harmonic Signals in Electrical Power Systems

    Get PDF
    The harmonic content in electrical power systems is an increasingly worrying issue since the proliferation of nonlinear loads results in power quality problems as the harmonics is more apparent. In this paper, we analyze the behavior of the harmonics in the electrical power systems such as cables, transmission lines, capacitors, transformers, and rotating machines, the induction machine being the object of our study when it is excited to nonsinusoidal operating conditions in the stator winding. For this, a model is proposed for the harmonic analysis of the induction machine in steady‐state regimen applying the Fourier transform. The results of the proposed model are validated by experimental tests which gave good results for each case study concluding in a model proper for harmonic and nonharmonic analysis of the induction machine and for “harmonic” analysis in an electrical power system

    Dimensioning Optimization of the Permanent Magnet Synchronous Generator for Direct Drive Wind Turbines

    Get PDF
    In the present work, a methodology that allows optimizing the permanent magnet synchronous generator (PMSG) design by establishing limit values of magnet radius and length that maximize efficiency for the nominal parameters of the wind turbine is developed. The methodology consists of two fundamental models. One model calculates the generator parameters from the radius of the magnet base, and the other optimization model determines two optimum generators according to the optimization criteria of maximum efficiency and maximum efficiency with minimum weight starting from the axial length and the radius of the magnet base. For the optimization, the numerical method of the golden section was used. The model was validated from a 10 kW PMSG and the results of two optimum generators are presented according to the optimization criteria. In addition, when the obtained results are compared with the reference electric generator, an increase in efficiency of 1.15% and 0.81% and a reduction in weight of 30.79% and 39.15% of the optimized generators are obtained for maximum efficiency and minimum weight, respectively. Intermediate options between the maximum efficiency generator and the minimum weight generator allows for the selection of the optimum dimensioning for the electric generator as a function of the parameters from the wind turbine design

    Vibration Measurement Using Laser Triangulation for Applications in Wind Turbine Blades

    Get PDF
    The blades in a wind turbine are currently manufactured with flexible and light materials, which make them more susceptible to the effects of vibrations when the wind speed is high enough, causing fatigue damage, affecting the functionality of its structure and aerodynamic efficiency. This work presents a comparison of the modal vibration parameters, applied to a cantilever beam, determined with two experimental methods—the use of accelerometers and a proposed optical non-contact method—based on the principle of laser triangulation and photogrammetry techniques. This technique uses the geometric symmetry of the equidistant displacements along the z axis of the beam to obtain the amplitude data. Parameters such as natural frequency and modal form are obtained by fitting the data to a nonlinear equation with a solution which is an exponential/harmonic equation. Also, analytically, these parameters are determined, and a comparison is made between the experimental methods. The result shows that the relative error of the first-order natural vibration frequency is below 1%. The proposed method is simple, efficient, reliable, and it is also a method that has not been applied to the test of wind turbine blades, so its implementation as this type of wind turbine component is an area of opportunity for the validation of modal vibration parameters in the wind industry. An analysis of results is presented showing benefits of the proposed method and its limitations

    Angle Calculus-Based Thrust Force Determination on the Blades of a 10 kW Wind Turbine

    No full text
    In this article, the behavior of the thrust force on the blades of a 10 kW wind turbine was obtained by considering the characteristic wind speed of the Isthmus of Tehuantepec. Analyzing mechanical forces is essential to efficiently and safely design the different elements that make up the wind turbine because the thrust forces are related to the location point and the blade rotation. For this reason, the thrust force generated in each of the three blades of a low-power wind turbine was analyzed. The angular position (θ) of each blade varied from 0° to 120°, the blades were segmented (r), and different wind speeds were tested, such as cutting, design, average, and maximum. The results demonstrate that the thrust force increases proportionally with increasing wind speed and height, but it behaves differently on each blade segment and each angular position. This method determines the angular position and the exact blade segment where the smallest and the most considerable thrust force occurred. Blade 1, positioned at an angular position of 90°, is the blade most affected by the thrust force on P15. When the blade rotates 180°, the thrust force decreases by 9.09 N; this represents a 66.74% decrease. In addition, this study allows the designers to know the blade deflection caused by the thrust force. This information can be used to avoid collision with the tower. The thrust forces caused blade deflections of 10% to 13% concerning the rotor radius used in this study. These results guarantee the operation of the tested generator under their working conditions
    corecore