18 research outputs found

    UV-Vis Sintering Process for Fabrication of Conductive Coatings Based on Ni-Ag Core–Shell Nanoparticles

    No full text
    The UV-Vis sintering process was applied for the fabrication of conductive coatings composed of low-cost nickel–silver (Ni@Ag) nanoparticles (NPs) with core–shell structures. The metallic films were formed on a plastic substrate (polyethylene napthalate, PEN), which required their sintering at low temperatures to prevent the heat-sensitive polymer from destroying them. The UV-Vis sintering method, as a non-invasive method, allowed us to obtain metallic coatings with good conductivity at room temperature. In optimal sintering conditions, i.e., irradiation with a wavelength of 350–400 nm and time of 90 min, conductivity corresponding to about 30% of that of bulk nickel was obtained for the coatings based on Ni@Ag NPs

    Hydrotalcite-Modified Clinoptilolite as the Catalyst for Selective Catalytic Reduction of NO with Ammonia (NH3-SCR)

    No full text
    A series of clinoptilolite-supported catalysts, modified with hydrotalcite-like phase (HT) by co-precipitation, were prepared and tested in NH3-SCR reactions. It was found that deposition of HT on clinoptilolite increased conversion of NO within 250–450 °C, and that the positive impact on the catalytic activity was independent of HT loading. The promoting effect of clinoptilolite was attributed to Brönsted acid sites present in the zeolite, which facilitated adsorption and accumulation of ammonia during the catalytic process. Concentration of N2O in the post-reaction gas mixture reached its maximum at 300 °C and the by-product was most likely formed as a consequence of NH4NO3 decomposition or side reaction of NH3 oxidation in the high-temperature region. The gradual elimination of nitrous oxide, noticed as the material with the highest concentration of hydrotalcite phase, was attributed to the abundance of oligomeric iron species and the superior textural parameters of the material. UV-Vis experiments performed on the calcined samples indicated that Fe sites of higher nuclearity were generated by thermal decomposition of the hydrotalcite phase during the catalytic reaction. Therefore, calcination of the materials prior to the catalytic tests was not required to obtain satisfactory overall catalytic performance in NO reductions

    Composites of Montmorillonite and Titania Nanoparticles Prepared by Inverse Microemulsion Method: Physico-Chemical Characterization

    No full text
    TiO2/montmorillonite composites were synthesized using inverse micellar route for the preparation of titania nanoparticles (4–6 nm diameter) in 1-hexanol and for the dispersion of one of the clay components. Two series of composites were obtained: one derived from cetyltrimethylammonium organomontmorillonite (CTA-Mt), exfoliated in 1-hexanol, and the other from sodium form of montmorillonite (Na-Mt) dispersed by formation of an inverse microemulsion in 1-hexanol. The TiO2 content ranged from 16 to 64 wt.%. The composites were characterized with X-ray diffraction, scanning/transmission electron microscopy/energy dispersive X-ray spectroscopy, thermal analysis, and N2 adsorption-desorption isotherms. The Na-Mt-derived component was shown to undergo transformation to CTA-Mt, as indicated by basal spacing of 17.5 nm, due to the interaction with the CTABr surfactant in inverse microemulsion. It was also better dispersed and intermixed with TiO2 nanoparticles. As a result, the TiO2/Na-Mt series displayed superior textural properties, with specific surface area up to 256 m2g−1 and pore volume up to 0.247 cm3g−1 compared with 208 m2g−1 and 0.231 cm3g−1, respectively, for the TiO2/CTA-Mt counterpart. Members of both series were uniformly mesoporous, with the dominant pore size around 5 nm, i.e., comparable with the dimensions of titania nanoparticles. The advantage of the adopted synthesis method is discussed in the context of other preparative procedures used for manufacturing of titania-clay composites

    Catalytic Performance and Sulfur Dioxide Resistance of One-Pot Synthesized Fe-MCM-22 in Selective Catalytic Reduction of Nitrogen Oxides with Ammonia (NH3-SCR)—The Effect of Iron Content

    No full text
    The catalytic performance of Fe-catalysts in selective catalytic reduction of nitrogen oxides with ammonia (NH3-SCR) strongly depends on the nature of iron sites. Therefore, we aimed to prepare and investigate the catalytic potential of Fe-MCM-22 with various Si/Fe molar ratios in NH3-SCR. The samples were prepared by the one-pot synthesis method to provide high dispersion of iron and reduce the number of synthesis steps. We have found that the sample with the lowest concentration of Fe exhibited the highest catalytic activity of ca. 100% at 175 °C, due to the abundance of well-dispersed isolated iron species. The decrease of Si/Fe limited the formation of microporous structure and resulted in partial amorphization, formation of iron oxide clusters, and emission of N2O during the catalytic reaction. However, an optimal concentration of FexOy oligomers contributed to the decomposition of nitrous oxide within 250–400 °C. Moreover, the acidic character of the catalysts was not a key factor determining the high conversion of NO. Additionally, we conducted NH3-SCR catalytic tests over the samples after poisoning with sulfur dioxide (SO2). We observed that SO2 affected the catalytic performance mainly in the low-temperature region, due to the deposition of thermally unstable ammonium sulfates
    corecore