5 research outputs found

    Treatment of severe primary IGF-1 deficiency using rhIGF-1 preparation — first three years of Polish experience

    Get PDF
    Introduction: The objective of this study was to analyse the effects of the first three years of treatment with recombinant human insulinlike growth factor 1 (rhIGF-1) in patients from the Polish population. Material and methods: Twenty-seven children (22 boys and five girls) aged 2.8 to 16.0 years old were qualified for treatment with rhIGF-1 (mecasermin) in different treatment centres, according to Polish criteria: body height below –3.0 SD and IGF-1 concentration below percentile 2.5 with normal growth hormone (GH) levels. Mecasermin initial dose was 40 μg/kg bw twice a day and was subsequently increased to an average of 100 μg/kg bw twice a day. Body height, height velocity, weight, body mass index (BMI), and adverse events were measured. Results: Mecasermin treatment resulted in a statistically significant increase in body height (1.45 ± 1.06 SD; p < 0.01) and height velocity in comparison with pre-treatment values. The biggest change in height velocity happened during the first year and diminished during subsequent years. Body weight and BMI also increased significantly after treatment (1.16 ± 0.76 SD and 0.86 ± 0.75 SD, respectively; p < 0.01). Eight patients reported adverse events. These were mild and temporary and did not require treatment modification except in two patients. Conclusions: Treatment with rhIGF-1 was effective and safe in Polish patients with primary IGF-1 deficiency. It had a clear beneficial effect on the height of the patients and significantly accelerated the height velocity, particularly in the first year of treatment

    Effects of Recombinant Human Growth Hormone Treatment, Depending on the Therapy Start in Different Nutritional Phases in Paediatric Patients with Prader-Willi Syndrome : a Polish Multicentre Study

    No full text
    Recombinant human growth hormone (rhGH) treatment is an established management in patients with Prader–Willi syndrome (PWS), with growth promotion and improvement in body composition and possibly the metabolic state. We compared anthropometric characteristics, insulin-like growth factor 1 (IGF1) levels, metabolic parameters and the bone age/chronological age index (BA/CA) in 147 children with PWS, divided according to age of rhGH start into four groups, corresponding to nutritional phases in PWS. We analysed four time points: baseline, rhGH1 (1.21 ± 0.81 years), rhGH2 (3.77 ± 2.17 years) and rhGH3 (6.50 ± 2.92 years). There were no major differences regarding height SDS between the groups, with a higher growth velocity (GV) (p = 0.00) and lower body mass index (BMI) SDS (p < 0.05) between the first and older groups during almost the whole follow-up. IGF1 SDS values were lower in group 1 vs. other groups at rhGH1 and vs. groups 2 and 3 at rhGH2 (p < 0.05). Glucose metabolism parameters were favourable in groups 1 and 2, and the lipid profile was comparable in all groups. BA/CA was similar between the older groups. rhGH therapy was most effective in the youngest patients, before the nutritional phase of increased appetite. We did not observe worsening of metabolic parameters or BA/CA advancement in older patients during a comparable time of rhGH therapy

    Personalized health risk assessment based on single-cell RNA sequencing analysis of a male with 45, X/48, XYYY karyotype

    No full text
    Abstract Numeric sex chromosome abnormalities are commonly associated with an increased cancer risk. Here, we report a 14-year-old boy with a rare mosaic 45, X/48, XYYY karyotype presenting with subtle dysmorphic features and relative height deficiency, requiring growth hormone therapy. As only 12 postnatal cases have been described so far with very limited follow-up data, to assess the proband’s long-term prognosis, including cancer risk, we performed high-throughput single-cell RNA sequencing (scRNA-seq) analysis. Although comprehensive cytogenetic analysis showed seemingly near perfect balance between 45, X and 48, XYYY cell populations, scRNA-seq revealed widespread differences in genotype distribution among immune cell fractions, specifically in monocytes, B- and T-cells. These results were confirmed at DNA level by digital-droplet PCR on flow-sorted immune cell types. Furthermore, deregulation of predominantly autosomal genes was observed, including TCL1A overexpression in 45, X B-lymphocytes and other known genes associated with hematological malignancies. Together with the standard hematological results, showing increased fractions of monocytes and CD4+/CD8+T lymphocytes ratio, long-term personalized hemato-oncological surveillance was recommended in the reported patient
    corecore