726 research outputs found

    Entropy production in nonequilibrium steady states: A different approach and an exactly solvable canonical model

    Full text link
    We discuss entropy production in nonequilibrium steady states by focusing on paths obtained by sampling at regular (small) intervals, instead of sampling on each change of the system's state. This allows us to study directly entropy production in systems with microscopic irreversibility, for the first time. The two sampling methods are equivalent, otherwise, and the fluctuation theorem holds also for the novel paths. We focus on a fully irreversible three-state loop, as a canonical model of microscopic irreversibility, finding its entropy distribution, rate of entropy pr oduction, and large deviation function in closed analytical form, and showing that the widely observed kink in the large deviation function arises solely f rom microscopic irreversibility.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Crystallization in Glassy Suspensions of Hard Ellipsoids

    Get PDF
    We have carried out computer simulations of overcompressed suspensions of hard monodisperse ellipsoids and observed their crystallization dynamics. The system was compressed very rapidly in order to reach the regime of slow, glass-like dynamics. We find that, although particle dynamics become sub-diffusive and the intermediate scattering function clearly develops a shoulder, crystallization proceeds via the usual scenario: nucleation and growth for small supersaturations, spinodal decomposition for large supersaturations. In particular, we compared the mobility of the particles in the regions where crystallization set in with the mobility in the rest of the system. We did not find any signature in the dynamics of the melt that pointed towards the imminent crystallization events

    Strong Effect of Weak Charging in Suspensions of Anisotropic Colloids

    Get PDF
    Suspensions of hard colloidal particles frequently serve as model systems in studies on fundamental aspects of phase transitions. But often colloidal particles that are considered as ``hard'' are in fact weakly charged. If the colloids are spherical, weak charging has a only a weak effect on the structural properties of the suspension, which can be easily corrected for. However, this does not hold for anisotropic particles. We introduce a model for the interaction potential between charged ellipsoids of revolution (spheroids) based on the Derjaguin approximation of Debye--H\"uckel Theory and present a computer simulation study on aspects of the system's structural properties and phase behaviour. In line with previous experimental observations, we find that even a weak surface charge has a strong impact on the correlation functions. A likewise strong impact is seen on the phase behaviour, in particular, we find stable cubatic order in suspensions of oblate ellipsoids

    Lechoń’s ephemeral poems: people – issues – events in the New York period

    Get PDF
    English version. Original issue: “Archiwum Emigracji” 2023, no. 2 (32)https://apcz.umk.pl/AE/article/view/4969

    The Early Crystal Nucleation Process in Hard Spheres shows Synchronised Ordering and Densification

    Get PDF
    We investigate the early part of the crystal nucleation process in the hard sphere fluid using data produced by computer simulation. We find that hexagonal order manifests continuously in the overcompressed liquid, beginning approximately one diffusion time before the appearance of the first `solid-like' particle of the nucleating cluster, and that a collective influx of particles towards the nucleation site occurs simultaneously to the ordering process: the density increases leading to nucleation are generated by the same individual particle displacements as the increases in order. We rule out the presence of qualitative differences in the early nucleation process between medium and low overcompressions, and also provide evidence against any separation of translational and orientational order on the relevant lengthscales

    Description of hard sphere crystals and crystal-fluid interfaces: a critical comparison between density functional approaches and a phase field crystal model

    Full text link
    In materials science the phase field crystal approach has become popular to model crystallization processes. Phase field crystal models are in essence Landau-Ginzburg-type models, which should be derivable from the underlying microscopic description of the system in question. We present a study on classical density functional theory in three stages of approximation leading to a specific phase field crystal model, and we discuss the limits of applicability of the models that result from these approximations. As a test system we have chosen the three--dimensional suspension of monodisperse hard spheres. The levels of density functional theory that we discuss are fundamental measure theory, a second-order Taylor expansion thereof, and a minimal phase-field crystal model. We have computed coexistence densities, vacancy concentrations in the crystalline phase, interfacial tensions and interfacial order parameter profiles, and we compare these quantities to simulation results. We also suggest a procedure to fit the free parameters of the phase field crystal model.Comment: 21 page

    On the influence of a patterned substrate on crystallization in suspensions of hard spheres

    Get PDF
    We present a computer simulation study on crystal nucleation and growth in supersaturated suspensions of mono-disperse hard spheres induced by a triangular lattice substrate. The main result is that compressed substrates are wet by the crystalline phase (the crystalline phase directly appears without any induction time), while for stretched substrates we observe heterogeneous nucleation. The shapes of the nucleated crystallites fluctuate strongly. In the case of homogeneous nucleation amorphous precursors have been observed (Phys. Rev. Lett. {\bf 105}(2):025701 (2010)). For heterogeneous nucleation we do not find such precursors. The fluid is directly transformed into highly ordered crystallites.Comment: 14 pages, 13 figure
    corecore