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We investigate the early part of the crystal nucleation process in the hard sphere fluid using data
produced by computer simulation. We find that hexagonal order manifests continuously in the
overcompressed liquid, beginning approximately one diffusion time before the appearance of the
first “solid-like” particle of the nucleating cluster, and that a collective influx of particles towards
the nucleation site occurs simultaneously to the ordering process: the density increases leading
to nucleation are generated by the same individual particle displacements as the increases in or-
der. We rule out the presence of qualitative differences in the early nucleation process between
medium and low overcompressions and also provide evidence against any separation of transla-
tional and orientational order on the relevant lengthscales. © 2016 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http:/creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4953550]

. INTRODUCTION

As a typical first-order phase transition, crystallization
from the metastable melt begins with a nucleation process.
There are two order parameters which characterize the
transition (density and “crystalline order”). It is not a priori
evident that both parameters undergo the same dynamics
during the transition process. Consequently, a “density-first,” a
“bond-order-first,” and several more complex phase transition
scenarios have been proposed and vividly discussed in the
literature.

In this article, we investigate the role of density and order
fluctuations prior to nucleation and in the environment of
the growing nucleus. As a model system, we use spherical
particles that have repulsive interactions only. A hard sphere
model is the starting point for many theoretical treatments
of granular, fluid, glassy, and crystalline systems and may
be sufficient without further refinement if excluded volume
interactions are more significant than long-range forces.
Technological examples where a hard sphere model is
sufficient within important regimes include the study of metal
solidification (e.g., Ref. 1) and the formation of colloidal
crystals (e.g., Ref. 2). Crystallization in hard spheres has been
studied extensively but retains many open questions, of which
the nature of the initiating fluctuation is a particularly active
concern.

Classical Nucleation Theory (CNT) assumes that the
emerging nucleus and the surrounding fluid possess the
properties of the respective bulk phases, i.e., the emerging
nucleus already has the order and density of the bulk crystal
and the surrounding fluid is not affected by the growth of
the nucleus. This picture is not immediately credible in real
liquids and colloidal suspensions, where transport of material
is relevant. A detailed consideration of the outcome of mass
conservation and finite transport speeds in the fluid has been
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made for vapour-liquid nucleation by Lutsko and Nicolis,>
leading to an expectation of substantial early density changes
on a lengthscale larger than the initial nucleus (for the
vapour-liquid nucleation of Lennard-Jones particles). Early
densification in fluid-solid transitions is not a priori expected
to be as important as in vapour-liquid transitions, due to the
smaller difference in densities of the two phases; however,
this phenomenon has been reported in computer simulations
of hard sphere crystallisation by Schilling et al. in 2010° as
well as from experiment.’:8

A computational study by Russo and Tanaka® has
examined structure and density changes for a set of nucleating
trajectories at a number density ¢o> ~ 1.02, where o is the
diameter of a particle. Augmenting these trajectories with
fluctuation data drawn from the metastable liquid, they note
a coupling of order and density, but state that “the density
increase is foreshadowed by the prestructuring of the nucleus,”
adopting a position which we will crudely summarise as
“order-first.”

Tan et al. presented, from optical microscopy, two distinct
nucleation pathways for their colloidal system. Both pathways
began with hexagonally ordered precursors then developing
into either bcc or fcc metastable structures. A three step
process was described, with the final phase being either
bulk bee or rhep depending on the radius of the particles.
The presence of bulk bcc, and also the dependence on
radius, indicates that forces other than excluded volume
were important in these experiments; however, they remain
an interesting reference in which the authors state that the
nucleation sites were not correlated with increased local
density. In fact the authors claim that “nucleation rarely
starts from the densest regions,”!” see also a comment on
this work by Grandsy and Té6th.!" Another investigation using
microscopy, by Lu et al.,'? also found a decoupling of the
density and the nucleation event, stating: “nucleation events

© Author(s) 2016.
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were observed that rarely start from the denser regions of
colloidal samples.”

Kawasaki and Tanaka'’ found medium range ordered
precursors of sizes larger than the critical nucleus in
simulations of hard spheres. The lifetime of these structures
was estimated as “a few times the relaxation time 7,.”
It was stated that the ordering was not icosahedral but
rather hcp with multiple defects. A similar observation was
reported by Schilling et al.*'* where low symmetry clusters
of considerable size spontaneously transformed into highly
ordered crystals. The effect of ordered precursor structures
on crystallization should be to reduce the surface tension,
which would be consistent with experiments of Gasser et al.'?
finding strongly aspherical shapes for the critical or near
critical nuclei. The most recent minireview'' states that fluid-
solid nucleation is probably multistep in most cases, but that
the specific steps expected to be relevant in a given system are
to date unclear.

The overview of the current literature is confusing: is
the now-common idea of hard sphere nucleation as a two
step process physically useful? Are densification and ordering
separable from each other, and if so does one in general come
first? The emergence of unclear and apparently contradictory
statements creates a need to re-examine the onset of crystalli-
zation. It is not desirable to reduce nuanced expositions from
the literature to blunt and simplified statements; however, we
must remark that the “density first”® and “order first”® positions
cannot both be right. The summarised claim in Schilling et al.®
is that of a two step mechanism, remarkable in that it arises
without attractive forces: “The metastable fluid relaxes the
density first, by producing dense low symmetry clusters.” The
key claim from Russo and Tanaka® is of the opposite two step
mechanism. “The transition from liquid-like to crystal-like
happens at constant density.” Kawasaki and Tanaka argue in
a separate work'? that the sequence in detail is liquid — hcp
— dense rhep.

To clarify the sequence of events, we argue that, at
least at low and medium overcompressions, the fluid does
indeed possess correlations over medium lengthscales in
hexagonal order; however, these are typically accompanied
by synchronised density fluctuations of the same lengthscale:
the initiating fluctuation is of medium range and of low
amplitude in both density and order and has the same pattern
of radial decay in each parameter as for the normal quiescent
fluctuations. Our analysis shows a synchronised increase
of density and hexagonal order leading up to nucleation,
although we allow that elevated hexagonal order is probably
the more useful (less noisy) of the two reaction coordinates as
a predictor of nucleation events.

A further issue which has been mentioned in relation to
this subject is the existence of two distinct ordered phases in
2D systems of hard discs. The hard disc phase intermediate
between the fluid and solid (called the hexatic) is distinct
from the crystal in which it has long-range orientational
order and short-range translational order.'® There is no
known hexatic-like phase of bulk 3-spheres; however, the
possibility of some related unstable state manifesting along
the nucleation pathway has generated a certain amount of
excitement; therefore, translational and orientational orders

J. Chem. Phys. 145, 211901 (2016)

are typically distinguished in the literature in case they should
turn out to be meaningfully different with each other.

We argue that to claim a separation of translational
and orientational ordering in 3 dimensional hard spheres
would require much stronger evidence than has yet been
seen: well-defined and distinct scaling of orientational and
translational order in the fluctuations prior to nucleation events
would need to be shown, and this has not been observed.
Orientational order is conventionally defined with respect to
the neighbourhood of a single particle via a decomposition of
the orientational distribution of “bonds” (displacement vectors
between neighbouring particles) into spherical harmonics
(g6, Ys, €tc.), while translational order is typically computed
using reciprocal-space observables not directly comparable to
the orientational analysis. We attempt to test this distinction
here by comparing translational and orientational order as
directly as possible, via a direct-space analysis of bond
lengths which is more comparable to the spherical harmonic
analysis of bond orientations conventionally used to report the
orientational order.

In this work, we analyze new simulations at low volume
fractions and using different dynamical schemes, and we also
revisit the 2010 dataset. We show that local and also medium-
range density changes take place simultaneously to the initial
formation of (weak) translational and orientational order,
presenting an order-with-density model which is distinct from
the order-first mechanism preferred by Russo and Tanaka.’
We also test the expectation based on work by Kawasaki
and Tanaka,'® Tan et al.,'’ Barros and Klein,'” and Schilling
et al.®'* that weakly ordered precursors to crystallization
should or might be present, and find that hexagonal ordering
manifests gradually and continuously in the fluid prior to the
formation of the first definitively solid-like particles, without
evidence of any intermediate state.

Il. RE-ANALYSIS AND EXTENSION OF THE 2010
NUCLEATION DATASET

As outlined in the Introduction, previous studies of
simulation data have suggested an important role for dense
precursors in the structure formation process of hard spheres.
We revisit an extant dataset comprising independent runs of
N = 216000 hard spheres of diameter o~ at a number densities
of ¢0'3 =1.03, 1.027, and 1.024, corresponding to chemical
potential differences in of about |[Au| =~ 0.6kpT per particle.
Nucleation at these overcompressions was observable without
the use of accelerated sampling algorithms. The time evolution
was defined by MC simulation mimicking Brownian diffusion,
with particles undergoing independent displacements at a
fixed attempt frequency and small random stepsize much less
than o. In order to extend the original datasets, further runs
were made, using event-driven molecular dynamics (MD) at
¢03 = 1.03 thus testing for effects arising from the choice of
dynamical scheme, and also using MD simulations accelerated
by flat histogram Pruned and Enriched Rosenbluth Forward
Flux Sampling (flatPERM-FFS) at lower overcompressions
(Table I).

The known sampling difficulties for FFS calculations in
this system'? were ameliorated using the flat histogram Pruned



211901-3 Berryman et al.

TABLE 1. Simulations discussed in this work. Runs using rare event sam-
pling (flatPERM-FES) were computationally cheaper than brute force MD
and MC; therefore, more runs were made (and smaller errorbars achieved).

N N
¢o3 Scheme runs particles Apyy (kpT)  Year
1.030 MC 4 216000 —-0.585 2010
1.030 MD 6 216000 —-0.585 New
1.029 flatPERM-FFS 21 20262 -0.58 New
1.027 MC 6 64000 -0.56 2010
1.012  flatPERM-FFS 15 19924 —-0.50 New

Enriched Rosenbluth FFS method (flatPERM-FFS)?*22 which
was added to the functionality of the freshs.org?’ sampling
system for the purpose of this calculation. flatPERM-FFS was
found to give significant improvement in convergence relative
to direct FFS. flatPERM-FES is a path sampling technique
applicable to stochastic dynamical systems subject to rare
events, i.e., bottlenecks in their dynamics such as crystal
nucleation. The scheme operates by selectively branching
multiple copies of trajectories which make progress with
respect to a specific collective variable (here the number of
particles in the largest crystalline cluster). As the dynamics are
stochastic, the branched trajectories diverge with a proportion
of them making further forward progress in the reaction
coordinate. The gist of the gain from using flatPERM rather
than direct FFS is that paths are selected for branching in a
Bayesian way that takes account of their histories.

Voronoi volumes were determined using Rycroft’s
voro++ tool.'® The crystalline cluster was identified by the dot
product of Steinhardt bond order parameter g of neighbouring

particles,?>~>
N -
g"<z>=§ PRGN (1)
j=1...12
aadi) =15 O a0, @)
m=-6...6

where Y(¥) is the mth of 13 complex components of
the sixfold spherical harmonic, and where a bond was
treated as solid-like for the purpose of analysis if the ratio
q6q6(i, j)/~ g646(i,1)q6q6(j. j) Was greater than 0.7.

Hexagonal/icosahedral order was also measured via the
third-order parameter wyg,

wi(i) = Z

m,n,o
s.t. m+n+o=0

I 11

)qz'” (0)q)'(i)q/ @), (3)
m n o
where parentheses indicate a Wigner 3-j coefficient determined
for the m,n,o0. w4,q4, and w6 bond order parameters were
found using the bop utility.”® In all plots, the g6 value
is calculated over the 12 nearest neighbours j for each
particle, in order to have the most sensitive probe of hexagonal
order.

The progress coordinate of the flatPERM-FFS calculation
was chosen as the number of solid-like bonds (over a threshold
of 0.75) in the largest cluster of particles having 10 or more
such bonds. The initial interface A was defined as 20 bonds,
with further interfaces placed not less than 20 bonds apart.
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The interface placement algorithm of Kratzer et al.?® was
used. Only one trajectory per FFS calculation was analysed,
in order to avoid complicating the calculation of errorbars
by the use of partly correlated trajectories. The University of
Luxembourg HPC service was used.?’

In order to analyse the local environment of particles
from an additional perspective, the parameter-free algorithm
of van Meel et al.’! was used to estimate the number of
actual neighbours per particle, with a value of 12 strongly
indicating either icosahedral or close-packed order. This
algorithm operates by associating a solid angle to each
additional neighbour moving outwards from i until the solid
angle subtended is 4.

In Fig. 1(a) we show the average size of the largest
crystalline cluster. The definition of solid particles for the
purpose of plotting this figure was chosen to be the same as in
Ref. 6, such that particle i was defined as solid if 11 or more
neighbours j gave a g6g6 product >0.7. This differs slightly
from the thresholds chosen to define cluster membership in
order to construct a reaction coordinate for the FFS runs, of
10 and 0.75. Insensitivity of this statistic to threshold choice is
shown in the supplementary material (Fig. S1°°) by presenting
the same statistic for a minimum cluster size of 7, as in Ref. 9.
Because nucleation events are randomly distributed in time,
it was necessary to define a different time-zero for each
trajectory such that the time series collected over different
nucleation events could be averaged together. A space-time
zero marking the centre and start of each nucleation event was
defined. The position of the nucleation event was defined as the
centre of mass of the largest cluster in the system at the final
timepoint when this cluster was of size 30 particles (i.e., at

8 s0[(@) ‘ ‘ ‘ » I}'WWMTI 'lu/rw

M

cluster si

% B — 1.030 MD [
— i

1.030 MC
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FIG. 1. (a) Number of particles in the largest crystalline cluster present, (b)
g6 hexagonal order statistics, (c) Voronoi volume, (d) per-particle transla-
tional order given as the standard deviation of neighbour distances within the
first and second shells, and (e) the number of neighbours found using the van
Meel algorithm. Averages are over a sphere of radius 20 (see text). Dashed
lines show the whole-system average Voronoi volume. Errorbars are twice the
estimated standard error.
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the time after which it grew irreversibly). The time-zero for
the nucleation event was then defined by following the 30
particles backwards in time until all of them were liquid-like.
The time zero is thus defined as the first final solidification
of any particle in this cluster. Averaged quantities were then
taken over particles within a sphere of radius 20~ around the
nucleation centre.

Across the traces of Figs. 1(a)-1(d), we observe a gradual,
tandem appearance of densification and ordering. The same
pattern is evident in the additional new datasets as in the
reanalysis of the old data. We attempt to make a local
measurement of translational order distinct to orientational
order by showing the standard deviation of the distance
to nearest neighbours SD(r,,) over the first two shells for
each particle 1(d). We make this direct-space measurement of
translational order because the usual definition of translational
order as relating to the presence of higher order Bragg peaks
is inherently non-local and therefore difficult to apply to
a small region of emerging solid phase, as well as being
unnecessary in the case that direct-space information is
available. Using this information we can see that translational
and rotational orderings are synchronised, thus eliminating
a candidate two-step nucleation mechanism. By measuring
the number of particles in the first neighbour shell via the
algorithm of van Meel et al.3' we show that the increase
of density and order arises by an increase towards 12 in
the average number of immediate neighbours 1(e), rather
than by isotropic compaction or by expulsion of a thirteenth
neighbour.

All observables apart from the size of the largest discrete
solid-like cluster start to smoothly deviate from their liquid
values at7 ~ —02/6D;, where Dj is the long time self-diffusion
constant. The cluster size lifts off more sharply and a little
later, because it is defined via a discrete thresholding of the
q6 values. In Refs. 6 and 32 this threshold was set close
to values expected for the bulk crystal. We suggest that the
emphasis on densification as the leading process in Ref. 6
arose mainly as a result of this decision to treat crystalline
order as a binary quantity, while it is now clear that local
ordering varies continuously on the pathway between the fluid
and crystalline phases.

A neighbourhood of twelve particles is compatible with
the (non-spacefilling) icosahedral symmetry as well as with fcc
and hcp. There has been considerable discussion, especially
in relation to glass formation, of the idea that this can lead
to a multistep or arrested nucleation process, for a review see
Ref. 33. A small decrease in w6 (together with a large increase
in ¢g6) is associated with hexagonal ordering; however, a
larger decrease in w6 (together with a small decrease in g6)
signifies icosahedra. An example threshold from the literature
for icosahedral order is w6 < —0.023.3* By computing the
w6 parameter as well as the g6 measurements, we show
that there is no signal of icosahedral order as an aspect of
the nucleation process at the non-glassy overcompressions
studied here (Fig. 2).

To further examine the time-correlation of the density
and order changes, we plot single traces (the first three MC
runs made at ¢o> = 1.027, Fig. 3). In the same way as for
the average pathway, for individual runs the density and order
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FIG. 2. The w6 spherical harmonic order parameter, used to identify icosa-
hedral structure, does not show sufficient change (i.e., w6 < —0.023) to
indicate that icosahedral order plays a role in nucleation at number densities
¢=[1.012...1.03].

increase simultaneously. Fluctuations evident in the individual
traces, whether up or down, are correlated between the two
observables with no discernible time lag. From this we confirm
the suggestion of Fig. 1 that the increases of density and order
are consequences of the exact same particle displacements,
in contrast to the constant-density ordering which has been
hypothesized.’

In order to estimate the length and entropy scales
associated with the initiating fluctuation, we plot the g6
and number density averages leading up to nucleation for
the set of MC simulations at ¢o> = 1.027, with averages
collected over spherical shells of increasing size around the
point of initiation of the nucleus, defined as in Fig. 1 (Fig. 4,
lines). For comparison we also map the log probability of
observing a value higher than a given g6 or ¢ in the bulk
liquid, i.e., the cost in free energy associated with creating
an order parameter fluctuation of this magnitude and radius.
The trace at first final appearance of the solid-like nucleus
(Fig. 4, line with open circles) is associated with a free energy
cost of approximately 3-5 kgT. Gradual and simultaneous
densification and ordering is indicated, with ordering initiated
non-locally in a (potentially irregular) region of approximately
3-50 radius. That the initiating density fluctuation does not
become negative over the range plotted indicates that the

W
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© 0.31
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0.26 1.00

11.10
© 0.31
[s2

— number density, ¢ {1.05°

T T | 1100
- -2 0 2
time [ o /6D, 1

0.26 . -
-8 -6

FIG. 3. Time series of average ge¢qe(i,i) and number density (inverse
Voronoi volume, ¢) for three MC runs at q&o-3 =1.027, with averages col-
lected in a sphere of radius 20~ centred on the nucleation event at 7 =0.
Order and density increase simultaneously in each case, and fluctuations in
the order and density traces are correlated with no time lag, see in particular
the upward-trending parts of each trace. The dashed line shows g6 =0.28.
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FIG. 4. (a) g6 and (b) inverse Voronoi volume, ¢, averaged over spherical
shells of increasing radii. The colour maps show the log probability to find a
given order parameter value (or greater) when averaging over random shells
of the same radius in the bulk fluid. Traces indicate orientational averages over
shells centred on the time-zero of the initiation of the nucleation event (first
final solidification of a particle). The trace shading from light to dark indicates
a time range of o2t /6D;=—-1...1, with the 7 =0 trace highlighted using
circles. The ¢o3 =1.027 MC dataset is shown here. Dashed lines indicate
quiescent averages.

inward mass flux is compensated at fairly long range. A
version of Fig. 4 confirming similar behaviour at ¢o> = 1.012
is appended as supplementary material (Fig. S2°°).

lll. CONCLUSION

We have analysed the early stages of crystal nucleation
in hard spheres. We observe that densification does not occur
prior to bond orientational ordering, and also that bond
orientational ordering does not occur prior to densification.
Hard sphere nucleation starts with a process that includes
densification and ordering. As far as we are able to measure
orientational and translational ordering as distinct phenomena,
we find that they also occur simultaneously.

The early-stage hexagonally ordered fluctuations which
we discuss here are identifiable with the “dense amorphous
regions” or “low symmetry clusters” used by Schilling et al.®
to argue the density-first case in 2010, and also appear at
least similar to the “precursor structures” suggested to form
without density enhancements by the Tanaka group®!'33
and used to argue an order-first position. The explanation
which we can offer for the historical divergence between
density-first and order-first opinions is that probes of differing
sensitivity to the respective phenomena have previously been
employed. By showing that both variables lift from their
quiescent distributions not only together on average, but with
instantaneously correlated fluctuations in individual traces,
we hope that we have settled this dispute.

We assert that nucleation of hard sphere crystals at low to
medium overcompression begins with a collective fluctuation
of radius approximately 40, simultaneously manifested in
the density and in the positional order. The radius of
40 corresponds to order 100 particles (depending on the
shape of the nascent dense ordered region), indicating
fluctuations of a highly collective nature. The increase
of density at the nucleation site is supplied by long-
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range collective mass transport, with the amplitude of both
density and order falling off gradually over the characteristic
distance.

We accept the current speculation that it is possible to
advance a description of the hard sphere nucleation process
as two-step, but only in the weak sense that it begins
with an order/density fluctuation which initially strengthens
more than it grows (before starting to grow more than it
strengthens). At least when away from the glassy regime, the
changeover between these two “steps” is smooth and there
is no sign of any qualitative changes in the type of order
manifested.

The most agreement that we can find with and across
the recent literature is that nucleation is initiated with a
diffuse entity of finite spatial extent: this model contrasts with
the naive image of a sharply defined region of daughter
phase expanding outwards from a point and is a good
candidate to eventually supply control and understanding
of nucleation phenomena by matching the lengthscale and
structure of experimental probes with those of the initial
fluctuation.
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