44 research outputs found

    SCI1 Is a Direct Target of AGAMOUS and WUSCHEL and Is Specifically Expressed in the Floral Meristematic Cells

    Get PDF
    The specified floral meristem will develop a pre-established number of floral organs and, thus, terminate the floral meristematic cells. The floral meristematic pool of cells is controlled, among some others, by WUSCHEL (WUS) and AGAMOUS (AG) transcription factors (TFs). Here, we demonstrate that the SCI1 (Stigma/style cell-cycle inhibitor 1) gene, a cell proliferation regulator, starts to be expressed since the floral meristem specification of Nicotiana tabacum and is expressed in all floral meristematic cells. Its expression is higher in the floral meristem and the organs being specified, and then it decreases from outside to inside whorls when the organs are differentiating. SCI1 is co-expressed with N. tabacum WUSCHEL (NtWUS) in the floral meristem and the whorl primordia at very early developmental stages. Later in development, SCI1 is co-expressed with NAG1 (N. tabacum AG) in the floral meristem and specialized tissues of the pistil. In silico analyses identified cis-regulatory elements for these TFs in the SCI1 genomic sequence. Yeast one-hybrid and electrophoresis mobility shift assay demonstrated that both TFs interact with the SCI1 promoter sequence. Additionally, the luciferase activity assay showed that NAG1 clearly activates SCI1 expression, while NtWUS could not do so. Taken together, our results suggest that during floral development, the spatiotemporal regulation of SCI1 by NtWUS and NAG1 may result in the maintenance or termination of proliferative cells in the floral meristem, respectively

    Molecular Overview On Plant Somatic Embryogenesis

    No full text
    The developmental pathway leading to plant somatic embryogenesis (SE) is true demonstration of totipotency of plant cells. During this process, somatic cells, under appropriate conditions, divide and differentiate into embryos. This developmental pathway plays an important role as an efficient means for plant regeneration and large-scale propagation. It includes a profound reprogramming of gene expression leading to changes in cell division and differentiation patterns, becoming a suitable platform to study the morpho-physiological and molecular aspects involved in plant cell differentiation and embryo development. Plant growth regulators such as auxin, as well as stress factors and DNA methylation, are key components to induce entry into SE pathways. Proteome and transcriptome analysis allowed isolation and characterization of embryogenic-specific gene markers involved in promoting vegetative-to- embryogenic transition as well as in maturation of somatic embryos contributing to the understanding of complex relationships between inductive conditions and somatic embryo formation. This review describes current advances made, mainly at the molecular level, in discovery of the main factors involved in the induction and maturation of somatic embryos providing a basic background for understanding genetic reprogramming that is at the heart of this process. We paid special attention to extracellular protein markers during SE as well as to auxin, abscisic acid and ethylene response genes, transcriptor factors and proteins involved in embryogenic competence acquisition. © CAB International 2013.8Karami, O., Aghavaisi, B., Pour, A.M., Molecular aspects of somatic-to-embryogenic transition in plants (2009) Journal of Chemical Biology, 2, pp. 177-190Howell, S.H., (1998) Molecular Genetics of Plant Development, , 1st Ed. Cambridge University Press, Cambridge, UKYang, X., Zhang, X., Regulation of somatic embryogenesis in higher plants (2010) Critical Reviews in Plant Sciences, 29, pp. 36-57Garces, H.M.P., Champagne, C.E.M., Townsley, B.T., Park, S., Malho, R., Pedroso, M.C., Harada, J.J., Sinha, N.R., Evolution of asexual reproduction in leaves of the genus Kalanchoë (2007) Proceedings of the National Academy of Sciences of the United States of America, 104 (39), pp. 15578-15583. , DOI 10.1073/pnas.0704105104Rose, R.J., Mantiri, F.R., Kurdyukov, S., Chen, S.-K., Wang, X.-D., Nolan, K.E., Developmental biology of somatic embryogenesis (2010) Plant Developmental Biology-Biotechnological Perspectives, 2, pp. 3-26. , Pua EC, Davey MR, editors. Springer, Heidelberg, GermanyJiménez, V.M., Bangerth, F., Endogenous hormone levels in explants and in embryogenic and non-embryogenic cultures of carrot (2001) Physiology Plant, 111, pp. 389-395Namasivayam, P., Acquisition of embryogenic competence during somatic embryogenesis (2007) Plant Cell, Tissue and Organ Culture, 90 (1), pp. 1-8. , DOI 10.1007/s11240-007-9249-9Braybrook, S.A., Harada, J.J., LECs go crazy in embryo development (2008) Trends in Plant Science, 13, pp. 624-630Fehér, A., Why somatic plant cells start to form embryos? (2006) Somatic Embryogenesis., Plant Cell Monographs, 2, pp. 85-101. , Mujid A., Samaj J editors, Springer-Verlag, Heidelberg, GermanyPasternak, T.P., Prinsen, E., Ayaydin, F., Miskolczi, P., Potters, G., Asard, H., Van Onckelen, H.A., Feher, A., The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa (2002) Plant Physiology, 129 (4), pp. 1807-1819. , DOI 10.1104/pp.000810Yeung, E.C., Structural and development patterns in somatic embryogenesis (1995) Vitro Embryogenesis in Plants, pp. 205-247. , Thorpe TA, editor. Kluwer, NetherlandsLedwon, A., Gaj, M.D., LEAFY COTYLEDON2 gene expression and auxin treatment in relation to embryogenic capacity of Arabidopsis somatic cells (2009) Plant Cell Reports, 28, pp. 1677-1688Luerssen, H., Kirik, V., Herrman, P., Misera, S., FUSCA3 encodes a protein with a conserved Vp1/AB13-like B3 domain which is of functional importance for the regulation of seed maturation in Arabidopsis thaliana (1998) Plant Journal, 15, pp. 755-764Stone, S.L., Braybrook, S.A., Paula, S.L., Kwong, L.W., Meuser, J., Pelletier, J., Hsieh, T.-F., Harada, J.J., Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: Implications for somatic embryogenesis (2008) Proceedings of the National Academy of Sciences of the United States of America, 105 (8), pp. 3151-3156. , http://www.pnas.org/cgi/reprint/105/8/3151, DOI 10.1073/pnas.0712364105Rashid, S.Z., Yamaji, N., Kyo, M., Shoot formation from root tip region: A developmental alteration by WUS in transgenic tobacco (2007) Plant Cell Reports, 26 (9), pp. 1449-1455. , DOI 10.1007/s00299-007-0342-7Ledwon, A., Gaj, M.D., LEAFY COTYLEDON1, FUSCA3 expression and auxin treatment in relation to somatic embryogenesis induction in Arabidopsis (2011) Plant Growth Regulation, 65, pp. 157-167Lotan, T., Ohto, M., Yee, K.M., West, M.A.L., Lo, R., Kwong, R.W., Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells (1998) Cell, 93, pp. 1195-1205Parcy, F., Valon, C., Kohara, A., Misera, S., Giraudat, J., The ABSCISIC ACID-INSENSITIVE3, FUSCA3, and LEAFY COTYLEDON1 loci act in concert to control multiple aspects of arabidopsis seed development (1997) Plant Cell, 9 (8), pp. 1265-1277. , DOI 10.1105/tpc.9.8.1265Wang, H., Guo, J., Lambert, K.N., Lin, Y., Developmental control of Arabidopsis seed oil biosynthesis (2007) Planta, 226 (3), pp. 773-783. , DOI 10.1007/s00425-007-0524-0Kwong, R.W., Bui, A.Q., Lee, H., Kwong, L.W., Fischer, R.L., Goldberg, R.B., Harada, J.J., LEAFY COTYLEDON1-LIKE defines a class of regulators essential for embryo development (2003) Plant Cell, 15 (1), pp. 5-18. , DOI 10.1105/tpc.006973Suzuki, M., McCarty, D.R., Functional symmetry of the B3 network controlling seed development (2008) Current Opinion of Plant Biology, 11, pp. 548-553Stewards, F.C., Mapbs, M.O., Mears, K., Growth and organized development of cultured cells. II. Organization in cultures grown from freely suspended cells (1958) American Journal of Botany, 45, pp. 705-708Kagaya, Y., Toyoshima, R., Okuda, R., Usui, H., Yamamoto, A., Hattori, T., Leafy cotyledon1 controls seed storage protein genes through its regulation of FUSCA3 and abscisic acid insensitive 3 (2005) Plant Cell Physiology, 46, pp. 399-316Casson, S.A., Lindsey, K., The turnip mutant of Arabidopsis reveals that LEAFY COTYLEDON1 expression mediates the effects of auxin and sugars to promote embryonic cell identity (2006) Plant Physiology, 142 (2), pp. 526-541. , DOI 10.1104/pp.106.080895Braybrook, S.A., Stone, S.L., Park, S., Bui, A.Q., Le, B.H., Fischer, R.L., Goldberg, R.B., Harada, J.J., Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis (2006) Proceedings of the National Academy of Sciences of the United States of America, 103 (9), pp. 3468-3473. , DOI 10.1073/pnas.0511331103Harding, E.W., Tang, W., Nichols, K.W., Fernandez, D.E., Perry, S.E., Expression and Maintenance of Embryogenic Potential Is Enhanced through Constitutive Expression of AGAMOUS-Like 15 (2003) Plant Physiology, 133 (2), pp. 653-663. , DOI 10.1104/pp.103.023499Wang, H., Caruso, L.V., Downie, A.B., Perry, S.E., The embryo Mads domain protein Agamous-like 15 directly regulates expression of a gene encoding an enzyme involved in gibberellin metabolism (2004) Plant Cell, 16 (5), pp. 1206-1219. , DOI 10.1105/tpc.021261Liscum, E., Reed, J.W., Genetics of Aux/IAA and ARF action in plant growth and development (2002) Plant Molecular Biology, 49 (3-4), pp. 387-400. , DOI 10.1023/A:1015255030047Gazzarrini, S., Tsuchiya, Y., Lumba, S., Okamoto, M., McCourt, P., The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones Gibberellin and abscisic acid (2004) Developmental Cell, 7 (3), pp. 373-385. , DOI 10.1016/j.devcel.2004.06.017, PII S1534580704002746Riechmann, J.L., Meyerowitz, E.M., The AP2/EREBP family of plant transcription factors (1998) Biological Chemistry, 379 (6), pp. 633-646Feng, J.-X., Liu, D., Pan, Y., Gong, W., Ma, L.-G., Luo, J.-C., Deng, X.W., Zhu, Y.-X., An Annotation Update via cDNA Sequence Analysis and Comprehensive Profiling of Developmental, Hormonal or Environmental Responsiveness of the Arabidopsis AP2/EREBP Transcription Factor Gene Family (2005) Plant Molecular Biology, 59 (6), pp. 853-868. , DOI 10.1007/s11103-005-1511-0Nole-Wilson, S., Tranby, T.L., Krizek, B.A., AINTEGUMENTA -like (AIL) genes are expressed in young tissues and (2005) Plant Molecular Biology, 57, pp. 613-628. , may specify meristematic or division-competent statesFehér, A., The initiation phase of somatic embryogenesis: What we know and what we don't (2008) Acta Biologica Szegediensis, 52, pp. 53-56Ohto, M.-A., Fischer, R.L., Goldberg, R.B., Nakamura, K., Harada, J.J., Control of seed mass by APETALA2 (2005) Proceedings of the National Academy of Sciences of the United States of America, 102 (8), pp. 3123-3128. , DOI 10.1073/pnas.0409858102Elliott, R.C., Betzner, A.S., Huttner, E., Oakes, M.P., Tucker, W.Q.J., Gerentes, D., Aintegumenta, an Apetala2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth (1996) Plant Cell, 8, pp. 155-168Cernac, A., Benning, C., WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis (2004) Plant Journal, 40 (4), pp. 575-585. , DOI 10.1111/j.1365-313X.2004.02235.xBoutilier, K., Offringa, R., Sharma, V.K., Kieft, H., Ouellet, T., Zhang, L., Hattori, J., Van Lookeren Campagne, M.M., Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth (2002) Plant Cell, 14 (8), pp. 1737-1749. , DOI 10.1105/tpc.001941Kulinska-Lukaszek, K., Tobojka, M., Adamiok, A., Kurczynska, E.U., Expression of the BBM gene during somatic embryogenesis of Arabidopsis thaliana (2012) Biologia Plantarum, 56, pp. 389-394Heidmann, I., Lange, B., Lambalk, J., Angenent, G.C., Boutilier, K., Efficient sweet pepper transformation mediated by the baby boom transcription factor (2011) Plant Cell Reports, 30, pp. 1107-1115Srinivasan, C., Liu, Z., Heidmann, I., Supena, E.D.J., Fukuoka, H., Joosen, R., Lambalk, J., Boutilier, K., Heterologous expression of the BABY BOOM AP2/ERF transcription factor enhances the regeneration capacity of tobacco (Nicotiana tabacum L.) (2007) Planta, 225 (2), pp. 341-351. , DOI 10.1007/s00425-006-0358-1Passarinho, P., Ketelaar, T., Xing, M., Van Arkel, J., Maliepaard, C., Hendriks, M., BABY BOOM target genes provide diverse entry points into cell proliferation and cell growth pathways (2008) Plant Molecular Biology, 68, pp. 225-237Fujimoto, S.Y., Ohta, M., Usui, A., Shinshi, H., Ohme-Takagi, M., Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression (2000) Plant Cell, 12 (3), pp. 393-404. , DOI 10.1105/tpc.12.3.393Guo, H., Ecker, J.R., The ethylene signaling pathway: New insights (2004) Current Opinion in Plant Biology, 7 (1), pp. 40-49. , DOI 10.1016/j.pbi.2003.11.011Puigderrajols, P., Celestino, C., Suils, M., Toribio, M., Molinas, M., Histology of organogenic and embryogenic responses in cotyledons of somatic embryos of Quercus suber L. (2000) International Journal of Plant Sciences, 161 (3), pp. 353-362. , DOI 10.1086/314266Parenicova, L., De Folter, S., Kieffer, M., Horner, D.S., Favalli, C., Busscher, J., Cook, H.E., Colombo, L., Molecular and phylogenetic analyses of the complete MADS-Box transcription factor family in Arabidopsis: New openings to the MADS world (2003) Plant Cell, 15 (7), pp. 1538-1551. , DOI 10.1105/tpc.011544Thakare, D., Tang, W., Hill, K., Perry, S.E., The MADS-domain transcriptional regulator Agamous-Like15 promotes somatic embryo development in arabidopsis and soybean (2008) Plant Physiology, 146 (4), pp. 1663-1672. , http://www.plantphysiol.org/cgi/reprint/146/4/1663, DOI 10.1104/pp.108.115832Fernandez, D.E., Heck, G.R., Perry, S.E., Patterson, S.E., Bleecker, A.B., Fang, S.-C., The embryo MADS domain factor AGL15 acts postembryonically: Inhibition of perianth senescence and abscission via constitutive expression (2000) Plant Cell, 12 (2), pp. 183-197. , DOI 10.1105/tpc.12.2.183Zheng, Y., Ren, N., Wang, H., Stromberg, A.J., Perry, S.E., Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-like15 (2009) Plant Cell, 21, pp. 2563-2577Haecker, A., Gross-Hardt, R., Geiges, B., Sarkar, A., Breuninger, H., Herrmann, M., Laux, T., Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana (2004) Development, 131 (3), pp. 657-668. , DOI 10.1242/dev.00963Mayer, K.F.X., Schoof, H., Haecker, A., Lenhard, M., Jurgens, G., Laux, T., Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem (1998) Cell, 95 (6), pp. 805-815. , DOI 10.1016/S0092-8674(00)81703-1Zhang, X., Zong, J., Liu, J., Yin, J., Zhang, D., Genome-wide analysis of WOX gene family in rice, sorghum, maize, Arabidopsis and poplar (2010) Journal Integrative Plant Biology, 52, pp. 1016-1026Santa-Catarina, C., Oliveira, R.R., Cutri, L., Floh, E.I.S., Dornelas, M.C., WUSCHEL-related genes are expressed during somatic embryogenesis of the basal angiosperm Ocotea catharinensis Mez. (Lauraceae) (2012) Trees, 26, pp. 493-501Nardmann, J., Reisewitz, P., Werr, W., Discrete shoot and root stem cell-promoting WUS/WOX5 functions are an evolutionary innovation of angiosperms (2009) Molecular Biology and Evolution, 26, pp. 1745-1755Zuo, J., Niu, Q.-W., Frugis, G., Chua, N.-H., The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis (2002) Plant Journal, 30 (3), pp. 349-359. , DOI 10.1046/j.1365-313X.2002.01289.xMoura, E.F., Ventrella, M.C., Motoike, S.Y., Sá Jr., A.Q., Carvalho, M., Manfio, C.E., Histological study of somatic embryogenesis induction on zygotic embryos of macaw palm (Acrocomia aculeata (Jacq.) Lodd. ex Martius) (2008) Plant Cell Tissue Organ Culture, 95, pp. 175-184Bhalla, P.L., Singh, M.B., Molecular control of stem cell maintenance in shoot apical meristem (2006) Plant Cell Reports, 25, pp. 249-256Mordhorst, A.P., Toonen, M.A.J., De Vries, S.C., Plant Embryogenesis (1997) Critical Reviews in Plant Sciences, 16 (6), pp. 535-576Su, Y.H., Zhao, X.Y., Liu, Y.B., Zhang, C.L., O'Neil, S.D., Zhang, X.S., Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis (2009) Plant Journal, 59, pp. 448-460Dixon, D.P., Lapthorn, A., Edwards, R., Plant glutathione transferases (2002) Genome Biology, 3, pp. 30041-30020Singla, B., Tyagi, A.K., Khurana, J.P., Khurana, P., Analysis of expression profile of selected genes expressed during auxin-induced somatic embryogenesis in leaf base system of wheat (Triticum aestivum) and their possible interactions (2007) Plant Molecular Biology, 65 (5), ppRocha, D.I., Vieira, L.M., Tanaka, F.A., Silva, L.C., Otoni, W.C., Somatic embryogenesis of a wild passion fruit species Passiflora cincinnata masters: Histocytological and histochemical evidences (2012) Protoplasma, 249, pp. 747-758Zavattieri, M.A., Frederico, A.M., Lima, M., Sabino, R., Arnholdt-Schmitt, B., Induction of somatic embryogenesis as an example of stress-related plant reactions (2010) Electronic Journal of Biotechnology, 13, pp. 1-9Feher, A., Pasternak, T.P., Dudits, D., Transition of somatic plant cells to an embryogenic state (2003) Plant Cell, Tissue and Organ Culture, 74 (3), pp. 201-228. , DOI 10.1023/A:1024033216561Gaj, M.D., Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh (2004) Plant Growth Regulation, 43 (1), pp. 27-47. , DOI 10.1023/B:GROW.0000038275.29262.fbCharriere, F., Hahne, G., Induction of embryogenesis versus caulogenesis on in vitro cultured sunflower (Helianthus annuus L.) immature zygotic embryos: Role of plant growth regulators (1998) Plant Science, 137 (1), pp. 63-71. , DOI 10.1016/S0168-9452(98)00128-9, PII S0168945298001289Ogata, Y., Iizuka, M., Nakayama, D., Ikeda, M., Kamada, H., Koshiba, T., Possible involvement of abscisic acid in the induction of secondary somatic embryogenesis on seed-coat-derived carrot somatic embryos (2005) Planta, 221 (3), pp. 417-423. , DOI 10.1007/s00425-004-1449-5Kikuchi, A., Sanuki, N., Higashi, K., Koshiba, T., Kamada, H., Abscisic acid and stress treatment are essential for the acquisition of embryogenic competence by carrot somatic cells (2006) Planta, 223 (4), pp. 637-645. , DOI 10.1007/s00425-005-0114-yHatanaka, T., Sawabe, E., Azuma, T., Uchida, N., Yasuda, T., The role of ethylene in somatic embryogenesis from leaf discs of Coffea canephora (1995) Plant Science, 107, pp. 199-204Chen, J.T., Chang, W.C., 1-aminocyclopropane-1-carboxylic acid enhanced direct somatic embryogenesis from Oncidium leaf cultures (2003) Biologia Plantarum, 46 (3), pp. 455-458. , DOI 10.1023/A:1024307025893Woodward, A.W., Bartel, B., Auxin: Regulation, action, and interaction (2005) Annals of Botany, 95 (5), pp. 707-735. , DOI 10.1093/aob/mci083Teale, W.D., Paponov, I.A., Palme, K., Auxin in action: Signalling, transport and the control of plant growth and development (2006) Nature Reviews Molecular Cell Biology, 7 (11), pp. 847-859. , DOI 10.1038/nrm2020, PII NRM2020Möller, B., Weijers, D., Auxin control of embryo patterning (2009) Cold Spring Harbour Perspectives in Biology, 1 (5), pp. a001545. , doi: 10.1101/cshperspect.a001545 (published online)Knauss, S., Rohrmeier, T., Lehle, L., The auxin-induced maize gene ZmSAUR2 encodes a short-lived nuclear protein expressed in elongating tissues (2003) Journal of Biological Chemistry, 278 (26), pp. 23936-23943. , DOI 10.1074/jbc.M212585200Padmanabhan, K., Cantliffe, D.J., Koch, K.E., Auxin-regulated gene expression and embryogenic competence in callus cultures of sweetpotato, Ipomoea batatas (L.) Lam (2001) Plant Cell Reports, 20 (3), pp. 187-192. , DOI 10.1007/s002990000306Popescu, S.C., Popescu, G.V., Bachan, S., Zhang, Z., Seay, M., Gerstein, M., Snyder, M., Dinesh-Kumar, S.P., Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays (2007) Proceedings of the National Academy of Sciences of the United States of America, 104 (11), pp. 4730-4735. , DOI 10.1073/pnas.0611615104Kitamiya, E., Suzuki, S., Sano, T., Nagata, T., Isolation of two genes that were induced upon the initiation of somatic embryogenesis on carrot hypocotyls by high concentrations of 2,4-D (2000) Plant Cell Reports, 19 (6), pp. 551-557. , DOI 10.1007/s002990050772Chugh, A., Khurana, P., Gene expression during somatic embryogenesis - Recent advances (2002) Current Science, 83 (6), pp. 715-730Montero-Cortés, M., Rodri'Uez-Paredes, F., Burgeff, C., Pérez-Nuñez, T., Córdova, I., Oropeza, C., Characterisation of a cyclin-dependent kinase (CDKA) gene expressed during somatic embryogenesis of coconut palm (2010) Plant Cell Tissue and Organ Culture, 102, pp. 251-258Footitt, S., Ingouff, M., Clapham, D., Von Arnold, S., Expression of the viviparous 1 (Pavp1) and p34cdc2 protein kinase (cdc2Pa) genes during somatic embryogenesis in Norway spruce (Picea abies [L.] Karst) (2003) Journal of Experimental Botany, 54 (388), pp. 1711-1719. , DOI 10.1093/jxb/erg178Che, P., Love, T.M., Frame, B.R., Wang, K., Carriquiry, A.L., Howell, S.H., Gene expression patterns during somatic embryo development and germination in maize Hi II callus cultures (2006) Plant Molecular Biology, 62 (1-2), pp. 1-14. , DOI 10.1007/s11103-006-9013-2Sato, S., Toya, T., Kawahara, R., Whittier, R.F., Fukuda, H., Komamine, A., Isolation of a carrot gene expressed specifically during early stage somatic embryogenesis (1995) Plant Molecular Biology, 28, pp. 39-46Chakrabarty, D., Yu, K.W., Paek, K.Y., Detection of DNA methylation changes during somatic embryogenesis of Siberian ginseng (Eleuterococcus senticosus) (2003) Plant Science, 165 (1), pp. 61-68. , DOI 10.1016/S0168-9452(03)00127-4Schellenbaum, P., Mohler, V., Wenzel, G., Walter, B., Variation in DNA methylation patterns of grapevine somaclones (Vitis vinifera L.) (2008) BMC Plant Biology, 15 (8), p. 78Shibukawa, T., Yazawa, K., Kikuchi, A., Kamada, H., Possible involvement of DNA methylation on expression regulation of carrot LEC1 gene in its 50 -upstream region (2009) Gene, 437, pp. 22-31Furner, I.J., Matzke, M., Methylation and demethylation of the Arabidopsis genome (2011) Current Opinion Plant Biology, 14, pp. 137-141Rodrigues, J.C., Luo, M., Berger, F., Koltunow, A.M., Polycomb group gene function in sexual and asexual seed development in angiosperms (2010) Sex Plant Reprodution, 23, pp. 123-133Zhang, M., Kimatu, J.N., Xu, K., Liu, B., DNA cytosine methylation in plant development (2010) Journal Genetics Genomics, 37, pp. 1-12Leljak-Levanic, D., Bauer, N., Mihaljevic, S., Jelaska, S., Changes in DNA methylation during somatic embryogenesis in Cucurbita pepo L. (2004) Plant Cell Reports, 23 (3), pp. 120-127. , DOI 10.1007/s00299-004-0819-6Finkelstein, R., Reeves, W., Ariizumi, T., Steber, C., Molecular aspects of seed dormancy (2008) Annual Review of Plant Biology, 59, pp. 387-415. , DOI 10.1146/annurev.arplant.59.032607.092740Tuteja, N., Abscisic acid and abiotic stress signaling (2007) Plant Signaling and Behavior, 2 (3), pp. 135-138Nishiwaki, M., Fujino, K., Koda, Y., Masuda, K., Kikuta, Y., Somatic embryogenesis induced by the simple application of abscisic acid to carrot (Daucus carota L.) seedlings in culture (2000) Planta, 211, pp. 756-769Stasolla, C., Kong, L., Yeung, E.C., Thorpe, T.A.

    In Vitro Plant Regeneration And De Novo Differentiation Of Secretory Trichomes In Passiflora Foetida L. (passifloraceae)

    No full text
    The only species in the genus Passiflora (Passifloraceae) known to produce resin glands is P. foetida. These glands are secretory trichomes mainly present on the floral bracts and leaf stipules. The secretion produced by these glands has received attention recently due to the presence of substances with pharmacological properties. Attempts to apply in vitro cell culture methods for the large scale production of highly valuable metabolites has been rather limited due to the fact that these compounds are produced by highly differentiated secretory cells in trichomes which are seldom obtained or because differentiation is inhibited by in vitro conditions. Here we describe the in vitro plant regeneration of P. foetida obtained via organogenesis, using mature zygotic embryos as explants. Differentiated plantlets and, more important, the de novo differentiation of secretory trichomes in vitro could be observed in less than 30 days. There was a clear effect of the concentration of 2,4-dichlorophenoxyacetic acid in the culture media on the regeneration of plants and on the differentiation of glandular trichomes. Our results should be useful for the micropropagation of P. foetida, as well as for studies of the process of secretory trichome differentiation and the implemention of biotechnological methodologies for in vitro mass production of passifloricin and/or other substances present in the P. foetida resin. © 2011 Springer Science+Business Media B.V.10819199Agrawal, A.A., Induced responses to herbivory and increased plant performance (1998) Science, 279, pp. 1201-1202Bandyopadhyay, T., Gangopadhyay, G., Poddar, R., Mukherjee, K.K., Trichomes: their diversity distribution and density in acclimatization of teak (Tectona grandis L.) plants grown in vitro (2004) Plant Cell Tiss Organ Cult, 78, pp. 113-121Becerra, D.C., Forero, A.P., Góngora, G.A., Age and physiological condition of donor plants affect in vitro morphogenesis in leaf explants of Passiflora edulis f. flavicarpa (2004) Plant Cell Tissue Organ Cult, 79, pp. 87-90Bonfill, M., Mangas, S., Moyano, E., Cusido, R.M., Palazón, J., Production of centellosides and phytosterols in cell suspension cultures of Centella asiatica (2011) Plant Cell Tiss Organ Cult, 104, pp. 61-67Braglia, L., de Benedetti, L., Giovannini, A., Nicoletti, F., Bianchini, C., Pepino, L., Mercuri, A., In vitro plant regeneration as a tool to improve ornamental characters in Passiflora species (2010) Acta Hortic, 855, pp. 47-52Dawan, S., Shasany, A.K., Naqvi, A.A., Kumar, S., Khanuja, S.P.S., Menthol tolerant clones of Mentha arvensis: approach for in vitro selection of menthol rich genotypes (2003) Plant Cell Tiss Organ Cult, 75, pp. 87-94Delbarre, A., Muller, P., Imhoff, V., Guern, J., Comparison of mechanisms controlling uptake and accumulation of 2, 4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells (1996) Planta, 198, pp. 532-541Dodsworth, S., A diverse and intricate signalling network regulates stem cell fate in the shoot apical meristem (2009) Dev Biol, 336, pp. 1-9Dornelas, M.C., Vieira, M.L.C., Plant regeneration from protoplast cultures of Passiflora edulis var. flavicarpa Deg. and P. cincinnata Mast (1993) Plant Cell Rep, 13, pp. 103-106Dornelas, M.C., Vieira, M.L.C., Tissue culture on species of Passiflora (1994) Plant Cell Tissue Organ Cult, 36, pp. 211-217Dornelas, M.C., Vieira, M.L.C., Appezzato-da-Gloria, B., Histological analysis of organogenesis and somatic embryogenesis induced in immature tissues of Stylosanthes scabra (1992) Ann Bot, 70, pp. 477-482Durkee, L.T., Baird, C.W., Cohen, P.F., Light and electron microscopy of the resin glands of Passiflora foetida (Passifloraceae) (1984) Am J Bot, 71, pp. 596-602Echeverri, F., Arango, V., Quiñones, W., Torres, F., Escobar, G., Rosero, Y., Archbold, R., Passifloricins, polyketides alpha-pyrones from Passiflora foetida (2001) Phytochemistry, 56, pp. 881-885Fernando, J.A., Vieira, M.L., Machado, S.R., Appezzato-da-Glória, B., New insight into the in vitro organogenesis process: the case of Passiflora (2007) Plant Cell Tiss Organ Cult, 91, pp. 37-44Gamborg, O.L., Miller, R.A., Ojima, K., Nutrient requirements of suspension cultures of soybean root cells (1968) Exp Cell Res, 50, pp. 151-158Garcia, R., Pacheco, G., Falcão, E., Borges, G., Mansur, E., Influence of type of explants, plant growth regulators, salt composition of basal medium, and light on callogenesis and regeneration in Passiflora suberosa L. (Passifloraceae) (2011) Plant Cell Tiss Organ Cult, 106, pp. 47-54Glover, B.J., Differentiation in plant epidermal cells (2000) J Exp Bot, 51, pp. 497-505Göpfert, J.C., Macnevin, G., Ro, D.K., Spring, O., Identification, functional characterization and developmental regulation of sesquiterpene synthases from sunflower capitate glandular trichomes (2009) BMC Plant Biol, 9, p. 86Gordon, S.P., Heisler, M.G., Reddy, G.V., Ohno, C., Das, P., Meyerowitz, E.M., Pattern formation during de novo assembly of the Arabidopsis shoot meristem (2007) Development, 134, pp. 3539-3548Gurel, E., Yucesan, B., Aglic, E., Gurel, S., Verma, S., Regeneration and cardiotonic glycoside production in Digitalis davisiana Heywood (Alanya Foxglove) (2011) Plant Cell Tiss Organ Cult, 104, pp. 217-225Guzzo, F., Ceoldo, S., Andretta, F., Levi, M., In vitro culture from mature seeds of Passiflora species (2004) Sci Agric, 61, pp. 108-113Hamant, O., Traas, J., Boudaoud, A., Regulation of shape and patterning in plant development (2010) Curr Opin Genet Dev, 20, pp. 454-459Hare, J.D., Variation in herbivore and methyl jasmonate-induced volatiles among genetic lines of Datura wrightii (2007) J Chem Ecol, 33, pp. 2028-2043Jansen, W.A., (1962) Botanical Histochemistry: Principles and Practice, , San Francisco: WR FreemanKang, J.H., Liu, G., Shi, F., Jones, A.D., Beaudry, R.M., Howe, G.A., The tomato odorless-2 mutant is defective in trichome-based production of diverse specialized metabolites and broad-spectrum resistance to insect herbivores (2010) Plant Physiol, 154, pp. 262-272Kim, T.D., Lee, B.S., Kim, T.S., Choi, Y.E., Developmental plasticity of glandular trichomes into somatic embryogenesis in Tilia amurensis (2007) Ann Bot, 100, pp. 177-183Kiselev, K.V., Tyunin, A.P., Manyakhin, A.Y., Zhuravlev, Y.N., Resveratrol content and expression patterns of stilbene synthase genes in Vitis amurensis cells treated with 5-azacytidine (2011) Plant Cell Tiss Organ Cult, 105, pp. 65-72Levin, D.A., The role of trichomes in plant defense (1973) Quart Rev Plant Biol, 48, pp. 3-15Makunga, N.P., van Staden, J., An efficient system for the production of clonal plantlets of the medicinally important aromatic plant: Salvia africana-lutea L (2008) Plant Cell Tiss Organ Cult, 92, pp. 63-72Mohamed, M.E., Hicks, R.G.T., Blakesley, D., Shoot regeneration from mature endosperm of Passiflora foetida (1996) Plant Cell Tiss Organ Cult, 46, pp. 161-164Morone-Fortunato, I., Avato, P., Plant development and synthesis of essential oils in micropropagated and mycorrhiza inoculated plants of Origanum vulgare L. ssp. hirtum (Link) Ietswaart (2008) Plant Cell Tiss Organ Cult, 93, pp. 139-149Murashige, T., Skoog, F., A revised medium for rapid growth and bioassays with tobacco tissue cultures (1962) Physiol Plant, 15, pp. 473-497Ngan, A., Conduit, R., A double-blind, placebo-controlled investigation of the effects of Passiflora incarnata (passionflower) herbal tea on subjective sleep quality (2011) Phytoter Res, , doi: 10. 1002/ptr. 3400Pati, P.K., Kaur, J., Singh, P., A liquid culture system for shoot proliferation and analysis of pharmaceutically active constituents of Catharanthus roseus (L.) G. Don (2011) Plant Cell Tiss Organ Cult, 105, pp. 299-307Petrásek, J., Friml, J., Auxin transport routes in plant development (2009) Development, 136, pp. 2675-2688Pinto, D.L.P., Barros, B.A., Viccini, L.F., Campos, J.M.S., Silva, M.L., Otoni, W.C., Ploidy stability of somatic embryogenesis-derived Passiflora cincinnata Mast. plants as assessed by flow cytometry (2010) Plant Cell Tissue Organ Cult, 103, pp. 71-79Pipino, L., Braglia, L., Giovannini, A., Fascella, G., Mercuri, A., In vitro regeneration of Passiflora species with ornamental value (2008) Propag Ornam Plants, 8, pp. 47-49Puricelli, L., Dellaica, I., Sartor, L., Garbisa, S., Caniato, R., Preliminary evaluation of inhibition of matrix-metalloproteins MMP-2 and MMP-9 by Passiflora edulis and P. foetida aqueous extracts (2003) Fitoterapia, 74, pp. 302-304Reis, L.B., Silva, M.L., Lima, A.B.P., Oliveira, M.L.P., Pinto, D.L.P., Lani, E.R.G., Otoni, W.C., Agrobacterium rhizogenes-mediated transformation of passionfruit species: Passiflora cincinnata and P. edulis flavicarpa (2007) Acta Hortic, 738, pp. 425-431Shaik, S., Singh, N., Nicholas, A., HPLC and GC analyses of in vitro-grown leaves of the cancer bush Lessertia (Sutherlandia) frutescens L. reveal higher yields of bioreactive compounds (2011) Plant Cell Tiss Organ Cult, 105, pp. 431-438Silva, M.L., Pinto, D.L.P., Guerra, M.P., Floh, E.I.S., Bruckner, C.H., Otoni, W.C., A novel regeneration system for a wild passion fruit species (Passiflora cincinnata Mast.) based on somatic embryogenesis from mature zygotic embryos (2009) Plant Cell Tiss Organ Cult, 99, pp. 47-54Singh, S., Kuanar, A., Mohanty, S., Subudhi, E., Nayak, S., Evaluation of phytomedicinal yield potential and molecular profiling of micropropagated and conventionally grown turmeric (Curcuma longa L.) (2011) Plant Cell Tiss Organ Cult, 104, pp. 263-269Socorro, O., Tárrega, I., Rivas, F., Essential oils from wild and micropropagated plants of Origanum bastetanum (1998) Phytochemistry, 48, pp. 1347-1349Stancheva, N., Weber, J., Schulze, J., Alipieva, K., Ludwig-Müller, J., Phytochemical and flow cytometric analyses of Devil′s claw cell cultures (2011) Plant Cell Tiss Organ Cult, 105, pp. 79-84Su, Y.H., Zhang, X.S., Auxin gradients trigger de novo formation of stem cells during somatic embryogenesis (2009) Plant Signal Behav, 4, pp. 574-576Traw, M.B., Dawson, T.E., Differential induction of trichomes by three herbivores of black mustard (2002) Oecologia, 131, pp. 526-532Ulmer, T., Macdougal, J.M., (2004) Passiflora, Passion Flowers of the World, , Cambridge: Timber PressWagner, G.J., Secreting glandular trichomes: more than just hairs (1991) Plant Physiol, 96, pp. 675-679Yang, R.H., Shetty, K., Stimulation of rosmarinic acid in shoot cultures of oregano (Origanum vulgare) clonal line in response to proline, proline analogue, and proline precursors (1998) J Agric Food Chem, 46, pp. 2888-289

    Rapid Touch-stimulated Movement In The Androgynophore Of Passiflora Flowers (subgen. Decaloba; Sect. Xerogona): An Adaptation To Enhance Cross-pollination?

    No full text
    Plant touch-sensitive organs have been described since Darwin's observations and are related to a quick response to environment stimuli. Sensitive flower organs have been associated to an increase in the chances of cross pollination but there are few studies regarding this topic. Here we describe for the first time the kinetic of the androgynophore movement of 4 Passiflora species (P. sanguinolenta, P. citrina, P. capsularis, and P. rubra). For that, we collected flowers and recorded the movement after mechano-stimulating the androgynophore. From the recordings, we described the movement regarding its response and sensibility to mechanical stimulus and calculated the duration, speed, and the angle formed by the androgynophore before and after the movement. From our data we were able to propose a link to the pollination habit of these species. The movement of the androgynophore in these Passiflora is a noteworthy floral feature that might lead us to another astonishing example of a mechanism that evolved among angiosperms to assure sexual reproduction. © 2014 Landes Bioscience.9JANMartén-Rodríguez, S., Fenster, C.B., Agnarsson, I., Skog, L.E., Zimmer, E.A., Evolutionary breakdown of pollination specialization in a Caribbean plant radiation (2010) New Phytol, 188, pp. 403-417. , http://dx.doi.org/10.1111/j.1469-8137.2010.03330.x, PMID:20561209Fenster, C.B., Martén-Rodriguez, S., Reproductive assurance and the evolution of pollination specialization (2007) Int J Plant Sci, 168, pp. 215-228. , http://dx.doi.org/10.1086/509647Bartkowska, M.P., Johnston, M.O., Pollinators cause stronger selection than herbivores on floral traits in Lobelia cardinalis (Lobeliaceae) (2012) New Phytol, 193, pp. 1039-1048. , http://dx.doi.org/10.1111/j.1469-8137.2011.04013.x, PMID:22225567De Witt, S.S., Using phylogenetics to detect pollinator-mediated floral evolution (2010) New Phytol, 188, pp. 354-363. , http://dx.doi.org/10.1111/j.1469-8137.2010.03292.x, PMID:20497346Braam, J., In touch: Plant responses to mechanical stimuli (2005) New Phytol, 165, pp. 373-389. , http://dx.doi.org/10.1111/j.1469-8137.2004.01263.x, PMID:15720650Scorza, L.C., Dornelas, M.C., Plants on the move: Towards common mechanisms governing mechanicallyinduced plant movements (2011) Plant Signal Behav, 6, pp. 1979-1986. , http://dx.doi.org/10.4161/psb.6.12.18192, PMID:22231201Jaffe, M., Gibson, C., Biro, R., Physiological Studies of Mechanically Stimulated Motor Responses of Flower Parts. I. Characterization of the Thigmotropic Stamens of Portulaca grandifolora Hook (1977) Bot Gaz, 138, pp. 438-447. , http://dx.doi.org/10.1086/336946Schlindwein, C., Wittmann, D., Stamen movements in flowers of Opuntia (Cactaceae) favour oligolectic pollinators (1997) Plant Syst Evol, 204, pp. 179-193. , http://dx.doi.org/10.1007/BF00989204Fleurat-Lessard, P., Millet, B., Ultrastructural features of cortical parenchyma cells (motor cells) in stamen filaments of Berberis canadensis Mill and tertiary pulvini of Mimosa pudica L (1984) J Exp Bot, 35, pp. 1332-1341. , http://dx.doi.org/10.1093/jxb/35.9.1332Liu, Z.J., Chen, L.J., Liu, K.W., Li, L.Q., Rao, W.H., A floral organ moving like a caterpillar for pollinating (2010) J Syst Evol, 48, pp. 102-108. , http://dx.doi.org/10.1111/j.1759-6831.2009.00065.xUlmer, T., Macdougal, J.M., (2004) Passiflora: Passionflowers of the World, , Oregon, USA: Timber Press, IncMuschner, V.C., Lorenz, A.P., Cervi, A.C., Bonatto, S.L., Souza-Chies, T.T., Salzano, F.M., Freitas, L.B., A first molecular phylogenetic analysis of Passiflora (Passifloraceae) (2003) Am J Bot, 90, pp. 1229-1238. , http://dx.doi.org/10.3732/ajb.90.8.1229, PMID:21659223Krosnick, S.E., Freudenstein, J.V., Monophyly and floral character homology of old world Passiflora (Subgenus Decaloba: Supersection Disemma) (2005) Syst Bot, 30, pp. 139-152. , http://dx.doi.org/10.1600/0363644053661959Varassin, I.G., Trigo, J.R., Sazima, M., The role of nectar production, flower pigments and odour in the pollination of four species of Passiflora (Passifloraceae) in south-eastern Brazil (2001) Bot J Linn Soc, 136, pp. 139-152. , http://dx.doi.org/10.1111/j.1095-8339.2001.tb00563.xLindberg, A.B., Olesen, J.M., The fragility of extreme specialization: Passiflora mixta and its pollinating hummingbird Ensifera ensifera (2001) J Trop Ecol, 17, pp. 323-329. , http://dx.doi.org/10.1017/S0266467401001213Fischer, E., Leal, I.R., Effect of nectar secretion rate on pollination success of Passiflora coccinea (Passifloraceae) in the Central Amazon (2006) Braz J Biol, 66 (2 B), pp. 747-754. , http://dx.doi.org/10.1590/S1519-69842006000400019, PMID:16906307Beavon, M.A., Kelly, D., Invasional meltdown: Pollination of the invasive liana Passiflora tripartita var. mollissima (Passifloraceae) in New Zealand (2012) N Z J Ecol, 36, pp. 100-107Faria, F.S., Stehmann, J.R., Biologia reprodutiva de Passiñora capsularis L. e P. pohlii Mast. (Decaloba, Passiñoraceae) (2010) Acta Bot Bras, 24, pp. 262-269. , http://dx.doi.org/10.1590/S0102-33062010000100028Koschnitzke, C., Sazima, M., Biologia floral de cinco espécies de Passiflora L. (Passifloraceae) em mata semidecídua (1997) Rev Bras Bot, 20, pp. 119-126. , http://dx.doi.org/10.1590/S0100-84041997000200002Macdougal, J.M., Passiflora citrina, a new species in section Xerogona (Passifloraceae), from Mesoamerica (1989) Ann Mo Bot Gard, 76, pp. 354-356. , http://dx.doi.org/10.2307/2399355Altshuler, D.L., Flower color, hummingbird pollination, and habitat irradiance in four Neotropical forests (2003) Biotropica, 35, pp. 344-355Fenster, C.B., Armbruster, W.S., Wilson, P., Dudash, M.R., Thomson, J.D., Pollination syndromes and floral specialization (2004) Annu Rev Ecol Evol Syst, 35, pp. 375-403. , http://dx.doi.org/10.1146/annurev.ecolsys.34.011802.132347Sibaoka, T., Rapid plant movements triggered by action potentials (1991) Bot Mag Tokyo, 104, pp. 73-95. , http://dx.doi.org/10.1007/BF02493405Volkov, A.G., Foster, J.C., Ashby, T.A., Walker, R.K., Johnson, J.A., Markin, V.S., Mimosa pudica: Electrical and mechanical stimulation of plant movements (2010) Plant Cell Environ, 33, pp. 163-173. , http://dx.doi.org/10.1111/j.1365-3040.2009.02066.x, PMID:19895396Campbell, N.A., Garber, R.C., Vacuolar reorganization in the motor cells of Albizzia during leaf movement (1980) Planta, 148, pp. 251-255. , http://dx.doi.org/10.1007/BF00380035, PMID:24309827Fagerberg, W.R., Allain, D., A quantitative study of tissue dynamics during closure in the traps of Venus flytrap Dionaea muscipula Ellis (1991) Am J Bot, 78, pp. 647-657. , http://dx.doi.org/10.2307/2445086Kevan, P., Giurfa, M., Chittka, L., Why are there so many and so few white flowers? (1996) Trends Plant Sci, 1, pp. 280-284. , http://dx.doi.org/10.1016/1360-1385(96)20008-1Chittka, L., Shmida, A., Troje, N., Menzel, R., Ultraviolet as a component of flower reflections, and the colour perception of Hymenoptera (1994) Vision Res, 34, pp. 1489-1508. , http://dx.doi.org/10.1016/0042-6989(94)90151-1, PMID:802346

    Identifying Eucalyptus Expressed Sequence Tags Related To Arabidopsis Flowering-time Pathway Genes

    No full text
    Flowering initiation depends on the balanced expression of a complex network of genes that is regulated by both endogenous and environmental factors. The timing of the initiation of flowering is crucial for the reproductive success of plants; therefore, they have developed conserved molecular mechanisms to integrate both environmental and endogenous cues to regulate flowering time precisely. Extensive advances in plant biology are possible now that the complete genome sequences of flowering plants is available and plant genomes can be comprehensively compared. Thus, association studies are emerging as powerful tools for the functional identification of genes involved on the regulation of flowering pathways. In this paper we report the results of our search in the Eucalyptus Genome Sequencing Project Consortium (FORESTS) database for expressed sequence tags (ESTs) showing sequence homology with known elements of flowering-time pathways. We have searched the 33,080 sequence clusters in the FORESTS database and identified Eucalyptus sequences that codify putative conserved elements of the autonomous, vernalization-, photoperiod response- and gibberellic acid-controlled flowering-time pathways. Additionally, we have characterized in silico ten putative members of the Eucalyptus homologs to the Arabidopsis CONSTANS family of transcription factors.172255266Adams, J., Kelso, R., Cooley, L., The kelch repeat superfamily of proteins: Propellers of cell function (2000) Trends Cell Biol., 10, pp. 17-24Alabadi, D., Oyama, T., Yanovsky, M.J., Harmon, F.G., Mas, P., Kay, S.A., Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock (2001) Science, 293, pp. 880-883Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J., Gapped BLAST and PSI-BLAST: A new generation of protein database seach programs (1997) Nucl. Acids Res., 25, pp. 3389-3402Araki, T., Transition from vegetative to reproductive phase (2001) Curr. Opin. Plant Biol., 4, pp. 63-68Bagnall, D.J., King, R.W., Whitelam, G.C., Boylan, M.T., Wagner, D., Quail, P.H., Flowering responses to altered expression of phytochrome in mutants and transgenic lines of Arabidopsis thaliana (L) Heynh. (1995) Plant Physiol., 108, pp. 1495-1503Battey, N.H., Aspects of seasonally (2000) J. Exp. Bot., 51, pp. 1769-1780Birve, A., Sengupta, A.K., Beuchle, D., Larsson, J., Kennison, J.A., Rasmuson-Lestander, A., Muller, J., Su(z)12 a novel Drosophila Polycomb group gene that is conserved in vertebrates and plants (2001) Development, 128, pp. 3371-3379Blazquez, M.A., Weigel, D., Integration of floral inductive signals in Arabidopsis (2000) Nature, 404, pp. 889-892Blazquez, M.A., Green, R., Nilsson, O., Sussman, M.R., Weigel, D., Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter (1998) Plant Cell, 10, pp. 791-800Borden, K.L.B., RING fingers and B-boxes: Zinc-binding protein-protein interaction domains (1998) Biochem. Cell Biol., 76, pp. 351-358Borner, R., Kampmann, G., Chandler, J., Gleissner, R., Wisman, E., Apel, K., Melzer, S., A MADS domain gene involved in the transition to flowering in Arabidopsis (2000) Plant J., 24, pp. 591-599Briggs, W.R., Huala, E., Blue-light photoreceptors in higher plants (1999) Annu. Rev. Cell Dev. Biol., 15, pp. 33-62Burn, J.E., Bagnall, D.J., Metzger, J.D., Dennis, E.S., Peacock, W.J., DNA methylation vernalization and the initiation of flowering (1993) Proc. Natl. Acad. Sci. USA, 90, pp. 287-291Clarke, J.H., Dean, C., Mapping FRI a locus controlling flowering time and vernalization response in Arabidopsis thaliana (1994) Mol. Gen. Genet., 242, pp. 81-89Corbesier, L., Gadisseur, I., Silvestre, G., Jacqmard, A., Bernier, G., Design in Arabidopsis thaliana of a synchronous system of floral induction by one long day (1996) Plant J., 9, pp. 947-952Dornelas, M.C., Rodriguez, A.P.M., A genomic approach to elucidating grass flower development (2001) Gen. Mol. Biol., 24, pp. 69-76Dornelas, M.C., Rodriguez, A.P.M., Identification of differentially expressed genes during reproductive development in sugarcane (Saccharum sp) by the analysis of expressed sequence tags (2004) Flowering Newsletter, 37, pp. 40-45Dornelas, M.C., Amaral, W.A.N., Rodriguez, A.P.M., EgLFY, the Eucalyptus grandis homolog of the Arabidopsis gene LFY is expressed in reproductive and vegetative tissues (2004) Braz. J. Plant Physiol., 16, pp. 105-114Fowler, S., Lee, K., Onouchi, H., Samach, A., Richardson, K., Coupland, G., Putterill, J., GIGANTEA: A circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains (1999) EMBO J., 18, pp. 4679-4688Gendall, A.R., Levy, Y.Y., Wilson, A., Dean, C., The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis (2001) Cell, 107, pp. 525-535Griffiths, S., Dunford, R.D., Coupland, G., Laurie, D.A., The evolution of the CONSTANS-like gene families in barley, rice and Arabidopsis (2003) Plant Physiol., 131, pp. 1855-1867Guo, H.W., Duong, H., Ma, N., Lin, C.T., The Arabidopsis blue light receptor cryptochrome 2 is a nuclear protein regulated by a blue light-dependent post-transcriptional mechanism (1999) Plant J., 19, pp. 279-287Guo, H.W., Yang, W.Y., Mockler, T.C., Lin, C.T., Regulations of flowering time by Arabidopsis photoreceptors (1998) Science, 279, pp. 1360-1363Hall, T.A., BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT (1999) Nucl. Acids Symp. Ser., 41, pp. 95-98Hicks, K.A., Albertson, T.M., Wagner, D.R., EARLY FLOWERING3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis (2001) Plant Cell, 13, pp. 1281-1292Huq, E., Tepperman, J.M., Quail, P.H., GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis (2000) Proc. Natl. Acad. Sci. USA, 97, pp. 9789-9794Izawa, T., Takahashi, Y., Yano, M., Comparative biology comes into bloom: Genomic and genetic comparison of flowering pathways in rice and Arabidopsis (2003) Curr. Opin. Plant Biol., 6, pp. 113-120Jarillo, J.A., Capel, J., Tang, R.-H., Yang, H.-Q., Alonso, J.M., Ecker, J.R., Cashmore, A.R., An Arabidopsis circadian clock component interacts with both CRY1 and phyB (2001) Nature, 410, pp. 487-490Johanson, U., West, J., Lister, C., Michaels, S., Amasino, R., Dean, C., Molecular analysis of FRIGIDA a major determinant of natural variation in Arabidopsis flowering time (2000) Science, 290, pp. 344-347Johnson, E., Bradley, M., Harberd, N.P., Whitelam, G.C., Photoresponses of light-grown phyA mutants of Arabidopsis: Phytochrome A is required for the perception of day length extensions (1994) Plant Physiol., 105, pp. 141-149Kardailsky, I., Shukla, V.K., Ahn, J.H., Dagenais, N., Christensen, S.K., Nguyen, J.T., Chory, J., Weigel, D., Activation tagging of the floral inducer FT (1999) Science, 286, pp. 1962-1965Kinoshita, T., Harada, J.J., Goldberg, R.B., Fischer, R.L., Polycomb repression of flowering during early plant development (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 14156-14161Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M., Araki, T., A pair of related genes with antagonistic roles in mediating flowering signals (1999) Science, 286, pp. 1960-1962Koornneef, M., Blankestijn-de-Vries, H., Hanhart, C., Soppe, W., Peeters, T., The phenotype of some late-flowering mutants is enhanced by a locus on chromosome 5 that is not effective in the Landsberg erecta wild-type (1994) Plant J., 6, pp. 911-919Koornneef, M., Hanhart, C.J., Van Der Veen, J.H., A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana (1991) Mol. Gen. Genet., 229, pp. 57-66Kreps, J.A., Simon, A.E., Environmental and genetic effects on circadian clock-regulated gene expression in Arabidopsis (1997) Plant Cell, 9, pp. 297-304Lagercrantz, U., Axelsson, T., Rapid evolution of the family of CONSTANS like genes in plants (2000) Mol. Biol. Evol., 17, pp. 1499-1507Lee, H., Suh, S.-S., Park, E., Cho, E., Ahn, J.H., Kim, S.-G., Lee, J.S., Lee, I., The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis (2000) Genes Dev., 14, pp. 2366-2376Lee, I.A.B., Amasino, R., Analysis of naturally occurring late flowering in Arabidopsis thaliana (1993) Mol. Gen. Genet., 237, pp. 171-176Lee, Y., Lloyd, A.M., Roux, S.J., Antisense expression of the CK2 alpha-subunit gene in Arabidopsis Effects on light-regulated gene expression and plant growth (1999) Plant Physiol., 119, pp. 989-1000Levy, Y.Y., Dean, C., Control of flowering time (1998) Curr Opin Plant Biol, 1, pp. 49-54Levy, Y.Y., Mesnage, S., Mylne, J.S., Gendall, A.R., Dean, C., Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control (2002) Science, 297, pp. 243-246Liu, X.L., Covington, M.F., Fankhauser, C., Chory, J., Wanger, D.R., ELF3 encodes a circadian clock-regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway (2001) Plant Cell, 13, pp. 1293-1304Marchler-Bauer, A., Anderson, J.B., Cherukuri, P.F., DeWeese-Scott, C., Geer, L.Y., Gwadz, M., He, S., Bryant, S.H., CDD: A Conserved Domain Database for protein classification (2005) Nucl. Acids Res., 33, pp. 192-196McClung, C.R., Circadian rhythms in plants (2001) Annu. Rev. Plant Physiol. Plant Mol. Biol., 52, pp. 139-162Michaels, S.D., Amasino, R.M., Memories of winter: Vernalization and the competence to flower (2000) Plant Cell Environ., 23, pp. 1145-1153Michaels, S.D., Amasino, R.M., Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization (2001) Plant Cell, 13, pp. 935-941Mizoguchi, T., Wheatley, K., Hanzawa, Y., Wright, L., Mizoguchi, M., Song, H.-R., Carré, I.A., Coupland, G., LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis (2002) Dev. Cell, 2, pp. 629-641Moncur, M.W., Hasan, O., Floral induction in Eucalyptus nitens (1994) Tree Physiol., 14, pp. 1303-1312Mouradov, A., Cremer, F., Coupland, G., Control of flowering time: Interacting pathways as a basis for diversity (2002) Plant Cell, (SUPPL.), pp. S11-S130Nelson, D.C., Lasswell, J., Rogg, L.E., Cohen, M.A., Bartel, B., FKF1 a clock-controlled gene that regulates the transition to flowering in Arabidopsis (2000) Cell, 101, pp. 331-340Ohad, N., Yadegari, R., Margossian, L., Hannon, M., Michaeli, D., Harada, J.J., Goldberg, R.B., Fischer, R.L., Mutations in FIE a WD polycomb group gene allow endosperm development without fertilization (1999) Plant Cell, 11, pp. 407-415Onouchi, H., Igeno, M.I., Perilleux, C., Graves, K., Coupland, G., Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes (2000) Plant Cell, 12, pp. 885-900Park, D.H., Somers, D.E., Kim, Y.S., Choy, Y.H., Lim, H.K., Soh, M.S., Kim, H.J., Nam, H.G., Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene (1999) Science, 285, pp. 1579-1582Peña, L., Martin-Trillo, M., Juarez, J., Pina, J.A., Navarro, L., Martinez-Zapater, J.M., Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time (2001) Nature Biotechnol., 19, pp. 263-267Pineiro, M., Coupland, G., The control of flowering time and floral identity in Arabidopsis (1998) Plant Physiol., 117, pp. 1-8Putterill, J., Robson, F., Lee, K., Simon, R., Coupland, G., The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors (1995) Cell, 80, pp. 847-857Reeves, P.H., Coupland, G., Response of plant development to environment: Control of flowering by daylength and temperature (2000) Curr. Opin. Plant Biol., 3, pp. 37-42Robson, F., Costa, M.M.R., Hepworth, S., Vizir, I., Pineiro, M., Reeves, P.H., Putterill, J., Coupland, G., Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants (2001) Plant J., 28, pp. 619-631Roenneberg, T., Merrow, M., Circadian clocks: Omnes viae Romam ducunt (2000) Curr Biol, 10, pp. R742-R745Saitou, N., Nei, M., The neighbour joining method: A new method for reconstructing phylogenetic trees (1987) Molec. Biol. Evol., 4, pp. 406-425Samach, A., Coupland, G., Time measurement and the control of flowering in plants (2000) Bioessays, 22, pp. 38-47Samach, A., Onouchi, H., Gold, S.E., Ditta, G.S., Schwarz-Sommer, Z., Yanofsky, M.F., Coupland, G., Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis (2000) Science, 288, pp. 1613-1616Schaffer, R., Ramsay, N., Samach, A., Corden, S., Putterill, J., Carre, I.A., Coupland, G., The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering (1998) Cell, 93, pp. 1219-1229Sheldon, C.C., Burn, J.E., Perez, P.P., Metzger, J., Edwards, J.A., Peacock, W.J., Dennis, E.S., The FLF MADS box gene: A repressor of flowering in Arabidopsis regulated by vernalization and methylation (1999) Plant Cell, 11, pp. 445-458Sheldon, C.C., Rouse, D.T., Finnegan, E.J., Peacock, W.J., Dennis, E.S., The molecular basis of vernalization: The central role of FLOWERING LOCUS C (FLC) (2000) Proc. Natl. Acad. Sci. USA, 97, pp. 3753-3758Simpson, G.G., Dean, C., Arabidopsis the Rosetta stone of flowering time? (2002) Science, 296, pp. 285-289Somers, D.E., Schultz, T.F., Milnamow, M., Kay, S.A., ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis (2000) Cell, 101, pp. 319-329Somers, D.E., Webb, A.A.R., Pearson, M., Kay, S.A., The short-period mutant toc1-1 alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana (1998) Development, 125, pp. 485-494Southerton, S.G., Strauss, S.H., Olive, M.R., Harcourt, R.L., Decroocq, V., Zhu, X., Llewellyn, D.J., Dennis, E.S., Eucalyptus has a functional equivalent of the Arabidopsis floral meristem identity gene LEAFY (1998) Plant Mol. Biol., 37, pp. 897-910Strayer, C., Oyama, T., Schultz, T.F., Raman, R., Somers, D.E., Mas, P., Panda, S., Kay, S.A., Cloning of the Arabidopsis clock gene TOC1 an autoregulatory response regulator homolog (2000) Science, 289, pp. 768-771Suarez-Lopez, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F., Coupland, G., CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis (2001) Nature, 410, pp. 1116-1120Sung, Z.R., Belachew, A., Shunong, B., Bertrand-Garcia, R., EMF an Arabidopsis gene required for vegetative shoot development (1992) Science, 258, pp. 1645-1647Thompson, J.D., Higgins, D.G., Gibson, T.J., CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice (1994) Nucl. Acids Res., 22, pp. 4673-4680Wagner, D., Sablowski, R.W.M., Meyerowitz, E.M., Transcriptional activation of APETALA1 by LEAFY (1999) Science, 285, pp. 582-584Wang, Z.-Y., Tobin, E.M., Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression (1998) Cell, 93, pp. 1207-1217Weigel, D., Nilsson, O., A developmental switch sufficient for flower initiation in diverse plants (1995) Nature, 377, pp. 495-500Wilson, R.N., Heckman, J.W., Somerville, C.R., Gibberelin is required for flowering in Arabidopsis thaliana under short days (1992) Plant Physiol., 100, pp. 403-408Yang, C.-H., Chen, L.-J., Sung, Z.R., Genetic regulation of shoot development in Arabidopsis: Role of the EMF genes (1995) Dev. Biol., 169, pp. 421-435Yanovsky, M.J., Mazzella, M.A., Casal, J.J., A quadruple photoreceptor mutant still keeps track of time (2000) Curr. Biol., 10, pp. 1013-101

    Vacuolar Remodelling Mediates Touch-induced Androgynophore Movement In Passiflora (subg. Decaloba, Sect. Xerogona) Flowers

    No full text
    Some species of the genus Passiflora (sect. Xerogona) have flowers that exhibit a mechanically-induced movement of the androgynophore that is probably involved in pollination. Despite the many reports of touch-induced movements of floral parts, the studies concerning anatomical, ultrastructural and molecular aspects of the plant movements are restricted to the vegetative parts. Rapid plant movements are highly dependent on turgor changes of a particular flexible tissue formed by specialized cells capable of losing and gaining water rapidly. Thigmotropic androgynophores of four species of Passiflora from section Xerogona were analyzed at cellular and subcellular levels. Our results show that the movement is due to a vacuolar remodelling in a group of parenchymatous cells at the base of the androgynophore. After the movement, plasmolyzed and multivacuolated cells are present at the stimulated side and turgid and univacuolated cells at the opposite side. The results suggest that the mechanisms leading to the androgynophore movement in Passiflora are, in general, analogous to those reported for the movements of legume pulvinus, motile stamen filaments and guard cells of stomata, pointing to conserved cellular mechanisms of plant movement.20911613619Ackerman, J.D., Mesler, M.R., Pollination biology of Listera cordata (Orchidaceae) (1979) Am. J. Bot., 66, pp. 820-824Braam, J., In touch: plant responses to mechanical stimuli (2005) New Phytol., 165, pp. 373-389Campbell, N.A., Garber, R.C., Vacuolar reorganization in the motor cells of Albizzia during leaf movement (1980) Planta, 148, pp. 251-255Chen, J., Moreau, C., Liu, Y., Kawaguchi, M., Hofer, J., Ellis, N., Chen, R., Conserved genetic determinant of motor organ identity in Medicago truncatula and related legumes (2012) Proc. Natl. Acad. Sci. U. S. A., 109, pp. 11723-11728Cota-Sánchez, J.H., Almeida, O.J.G., Falconer, D.J., Choi, H.J., Bevan, L., Intriguing thigmonastic (sensitive) stamens in the Plains Prickly Pear Opuntia polyacantha (Cactaceae) (2013) Flora, 208, pp. 381-389Cote, G.G., Signal-transduction in leaf movement (1995) Plant Physiol., 109, pp. 729-734Darwin, C., (1880) The Power of Movement in Plants, , D Appleton and Company, New YorkDodd, A.N., Love, J., Webb, A.A.R., The plant clock shows its metal: circadian regulation of cytosolic free Ca2+ (2005) Trends Plant Sci., 10, pp. 15-21Fagerberg, W.R., Allain, D., A quantitative study of tissue dynamics during closure in the traps of venus's flytrap Dionaea muscipula Ellis (1991) Am. J. Bot., 78, pp. 647-657Faria, F.S., Stehmann, J.R., Biologia reprodutiva de Passiflora capsularis L. e P. pohlii Mast. (Decaloba, Passifloraceae) (2010) Acta Bot. Bras., 24, pp. 262-269Fleurat-Lessard, P., Structural and ultrastructural features of cortical-cells in motor organs of sensitive plants (1988) Biol. Rev. Camb. Philos. Soc., 63, pp. 1-22Fleurat-Lessard, P., Millet, B., Ultrastructural features of cortical parenchyma cells (motor cells) in stamen filaments of Berberis canadensis Mill and tertiary pulvini of Mimosa pudica L (1984) J. Exp. Bot., 35, pp. 1332-1341Fleurat-Lessard, P., Frangne, N., Maeshima, M., Ratajczak, R., Bonnemain, J.L., Martinoia, E., Increased expression of vacuolar aquaporin and H+-ATPase related to motor cell function in Mimosa pudica L (1997) Plant Physiol., 114, pp. 827-834Gao, X.Q., Li, C.G., Wei, P.C., Zhang, X.Y., Chen, J., Wang, X.C., The dynamic changes of tonoplasts in guard cells are important for stomatal movement in Vicia faba (2005) Plant Physiol., 139, pp. 1207-1216Gerrits, P.O., (1991) The Application of Glycol methacrylate in Histotechnology: Some Fundamental Principles. Department of Anatomy and Embryology, , State University of Groningen, Groningen, NetherlandsHenning, T., Weigend, M., Beautiful, complicated-and intelligent? Novel aspects of the thigmonastic stamen movement in Loasaceae (2013) Plant Signal. Behav., 8, p. e24605Hollins, D.L., Jaffe, M.J., On the role of tannin vacuoles in several nastic leaf responses (1997) Protoplasma, 199, pp. 215-222Jaffe, M.J., Gibson, C., Biro, R., Physiological studies of mechanically stimulated motor responses of flower parts, 1. Characterization of thigmotropic stamens of Portulaca grandiflora Hook (1977) Bot. Gaz., 138, pp. 438-447Jaffe, M.J., Leopold, A.C., Staples, R.C., Thigmo responses in plants and fungi (2002) Am. J. Bot., 89, pp. 375-382Koschnitzke, C., Sazima, I., Biologia floral de cinco espécies de Passiflora L, (Passifloraceae) em mata semidecídua (1997) Rev. Bras. Bot., 20, pp. 119-126Liu, Z.J., Chen, L.J., Liu, K.W., Li, L.Q., Rao, W.H., A floral organ moving like a caterpillar for pollinating (2010) J. Syst. Evol., 48, pp. 102-108MacDougal, J.M., Passiflora citrina, a new species in section Xerogona (Passifloraceae), from Mesoamerica (1989) Ann. Missouri Bot. Gard., 76, pp. 354-356Machado, S.R., Rodrigues, T.M., Anatomia e ultra-estrutura do pulvino primário de Pterodon pubescens Benth (Fabaceae - Faboideae) (2004) Rev. Bras. Bot., 27, pp. 135-147Marty, F., Plant vacuoles (1999) Plant Cell, 11, pp. 587-600McPherson, S., (2010) Carnivorous Plants and their Habitats, , Redfern Natural History Productions, Poole, Dorset, EnglandMoran, N., Osmoregulation of leaf motor cells (2007) FEBS Lett., 581, pp. 2337-2347Morse, M.J., Satter, R.L., Relationships between motor cell ultrastructure and leaf movement in Samanea saman (1979) Physiol. Plant, 46, pp. 338-346Moysset, L., Simon, E., Secondary pulvinus of Robinia pseudoacacia (Leguminosae): structural and ultrastructural features (1991) Am. J. Bot., 78, pp. 1467-1486Nicholson, C.C., Bales, J.W., Palmer-Fortune, J.E., Nicholson, R.G., Darwin's bee-trap: the kinetics of Catasetum, a new world orchid (2008) Plant Signal. Behav., 3, pp. 19-23Rodrigues, T.M., Machado, S.R., Primary pulvinus comparative anatomy of leguminous species with different leaf movement velocity (2006) Rev. Bras. Bot., 29, pp. 709-720Rodrigues, T.M., Machado, S.R., The pulvinus endodermal cells and their relation to leaf movement in legumes of the Brazilian cerrado (2007) Plant Biol., 9, pp. 469-477Rodrigues, T.M., Machado, S.R., Pulvinus functional traits in relation to leaf movements: a light and transmission electron microscopy study of the vascular system (2008) Micron, 39, pp. 7-16Romero, G.A., Nelson, C.E., Sexual dimorphism in Catasetum orchids - forcible pollen emplacement and male flower competition (1986) Science, 232, pp. 1538-1540Samejima, M., Sibaoka, T., Changes in the extracellular ion concentration in the main pulvinus of Mimosa pudica during rapid movement and recovery (1980) Plant Cell Physiol., 21, pp. 467-479Satter, R.L., Galston, A.W., Mechanisms of control of leaf movements (1981) Annu. Rev. Plant. Phys., 32, pp. 83-110Scorza, L.C.T., Dornelas, M.C., Plants on the move: towards common mechanisms governing mechanically-induced plant movements (2011) Plant Signal. Behav., 6, pp. 1979-1986Scorza, L.C.T., Dornelas, M.C., Rapid touch-stimulated movement in the androgynophore of Passiflora flowers (subgen, DecalobaSect. Xerogona): an adaptation to enhance cross-pollination? (2014) Plant Signal. Behav., 9, p. e27932Sibaoka, W., Rapid plant movements triggered by action potentials (1991) Bot. Mag. Tokyo, 104, pp. 73-95Ueda, M., Nakamura, Y., Chemical basis of plant leaf movement (2007) Plant Cell Physiol., 48, pp. 900-907Ulmer, T., MacDougal, J.M., (2004) Passiflora: Passionflowers of the World, , Timber Press, Inc., Oregon, USAVolkov, A.G., Foster, J.C., Ashby, T.A., Walker, R.K., Johnson, J.A., Markin, V.S., Mimosa pudica: electrical and mechanical stimulation of plant movements (2010) Plant Cell. Environ., 33, pp. 163-173Volkov, A.G., Pinnock, M.R., Lowe, D.C., Gay, M.S., Markin, V.S., Complete hunting cycle of Dionaea muscipula: consecutive steps and their electrical properties (2011) J. Plant Physiol., 168, pp. 109-120Volkov, A.G., Vilfranc, C.L., Murphy, V.A., Mitchell, C.M., Volkova, M.I., O'Neal, L., Markin, V.S., Electrotonic and action potentials in the Venus flytrap (2013) J. Plant Physiol., 170, pp. 838-846Zhou, C., Han, L., Fu, C., Chai, M., Zhang, W., Li, G., Tang, Y., Wang, Z.-Y., Identification and characterization of petiolule-like pulvinus mutants with abolished nyctinastic leaf movement in the model legume Medicago truncatula (2012) New Phytol., 196, pp. 92-10
    corecore