29 research outputs found

    A hot mini-Neptune in the radius valley orbiting solar analogue HD 110113

    Get PDF
    We report the discovery of HD 110113 b (TESS object of interest-755.01), a transiting mini-Neptune exoplanet on a 2.5-d orbit around the solar-analogue HD 110113 (Teff = 5730 K). Using TESS photometry and High Accuracy Radial velocity Planet Searcher (HARPS) radial velocities gathered by the NCORES program, we find that HD 110113 b has a radius of 2.05 ± 0.12 R⊕ and a mass of 4.55 ± 0.62 M⊕. The resulting density of 2.90−0.59+0.752.90^{+0.75}_{-0.59} g cm-3 is significantly lower than would be expected from a pure-rock world; therefore HD 110113 b must be a mini-Neptune with a significant volatile atmosphere. The high incident flux places it within the so-called radius valley; however, HD 110113 b was able to hold on to a substantial (0.1-1 per cent) H-He atmosphere over its ∼4 Gyr lifetime. Through a novel simultaneous Gaussian process fit to multiple activity indicators, we were also able to fit for the strong stellar rotation signal with period 20.8 ± 1.2 d from the RVs and confirm an additional non-transiting planet, HD 110113 c, which has a mass of 10.5 ± 1.2 M⊕ and a period of 6.744−0.009+0.0086.744^{+0.008}_{-0.009} d

    TOI-431/HIP 26013: a super-Earth and a sub-Neptune transiting a bright, early K dwarf, with a third RV planet

    Get PDF
    Stars and planetary system

    TOI-431/HIP 26013: A super-Earth and a sub-Neptune transiting a bright, early K dwarf, with a third RV planet

    Get PDF
    We present the bright (Vmag = 9.12), multiplanet system TOI-431, characterized with photometry and radial velocities (RVs). We estimate the stellar rotation period to be 30.5 ± 0.7 d using archival photometry and RVs. Transiting Exoplanet Survey Satellite (TESS) objects of Interest (TOI)-431 b is a super-Earth with a period of 0.49 d, a radius of 1.28 ± 0.04 R, a mass of 3.07 ± 0.35 M, and a density of 8.0 ± 1.0 g cm-3; TOI-431 d is a sub-Neptune with a period of 12.46 d, a radius of 3.29 ± 0.09 R, a mass of 9.90+1.53-1.49 M, and a density of 1.36 ± 0.25 g cm-3. We find a third planet, TOI-431 c, in the High Accuracy Radial velocity Planet Searcher RV data, but it is not seen to transit in the TESS light curves. It has an Msin i of 2.83+0.41-0.34 M, and a period of 4.85 d. TOI-431 d likely has an extended atmosphere and is one of the most well-suited TESS discoveries for atmospheric characterization, while the super-Earth TOI-431 b may be a stripped core. These planets straddle the radius gap, presenting an interesting case-study for atmospheric evolution, and TOI-431 b is a prime TESS discovery for the study of rocky planet phase curves

    Stromal cell-associated expression of kallikrein-related peptidase 6 (KLK6) indicates poor prognosis of ovarian cancer patients.

    No full text
    Item does not contain fulltextSeveral members of the human kallikrein-related peptidase family, including KLK6, are up-regulated in ovarian cancer. High KLK6 mRNA or protein expression, measured by quantitative polymerase chain reaction and enzyme-linked immunoassay, respectively, was previously found to be associated with a shortened overall and progression-free survival (OS and PFS, respectively). In the present study, we aimed at analyzing KLK6 protein expression in ovarian cancer tissue by immunohistochemistry. Using a newly developed monospecific polyclonal antibody, KLK6 immunoexpression was initially evaluated in normal tissues. We observed strong staining in the brain and moderate staining in the kidney, liver, and ovary, whereas the pancreas and the skeletal muscle were unreactive, which is in line with previously published results. Next, both tumor cell- and stromal cell-associated KLK6 immunoexpression were analyzed in tumor tissue specimens of 118 ovarian cancer patients. In multivariate Cox regression analysis, only stromal cell-associated expression, besides the established clinical parameters FIGO stage and residual tumor mass, was found to be statistically significant for OS and PFS [high vs. low KLK6 expression; hazard ratio (HR), 1.92; p=0.017; HR, 1.80; p=0.042, respectively]. These results indicate that KLK6 expressed by stromal cells may considerably contribute to the aggressiveness of ovarian cancer

    Crayfish in lakes and streams: individual and population responses to predation, productivity and substratum availability

    No full text
    1. In a correlative study, we investigated the relative importance of fish predation, refuge availability and resource supply in determining the abundance and size distributions of the introduced and omnivorous signal crayfish (Pacifastacus leniusculus) in lakes and streams. Moreover, the biomass and food selection of predatory fish was estimated in each habitat type and stable isotopes of carbon and nitrogen were measured in perch (Perca fluviatilis), the dominant predator in the lakes, and in its potential food sources (crayfish, juvenile roach and isopods). 2. In lakes, crayfish were the most frequent prey in large perch (46%), followed by other macroinvertebrates (26%, including the isopod Asellus aquaticus) and small fish (25%). Crayfish and fish dominated the gut contents of large perch with respect to biomass. Nitrogen signatures showed that perch were one trophic level above crayfish (approx. 3.4 parts per thousand) and a two-source mixing model using nitrogen isotope values indicated that crayfish (81%) contributed significantly more to perch isotope values than did juvenile roach (19%). A positive correlation was found between the abundance of crayfish and the biomass of large perch. Crayfish abundance in lakes was also positively correlated with the proportion of cobbles in the littoral zone. Lake productivity (chlorophyll a) was positively correlated with crayfish size, but not with crayfish abundance. 3. In streams, brown trout (Salmo trutta) were the most abundant predatory fish. Gut contents of large trout in a forested stream showed that terrestrial insects were the most frequently found prey (60%), followed by small crayfish (27%) and isopods (27%). In contrast to lakes, the relative abundance of crayfish was negatively correlated with the total biomass of predatory fish and with total biomass of trout. However, abundance of crayfish at sites with a low biomass of predatory fish varied considerably and was related to substratum grain size, with fewer crayfish being caught when the substratum was sandy or dominated by large boulders. The mean size of crayfish was greater at stream sites with a high standing stock of periphyton, but neither predator biomass nor substratum grain size was correlated with crayfish size. 4. Our results suggest that bottom-up processes influence crayfish size in lakes and streams independent of predator biomass and substratum availability. However, bottom-up processes do not influence crayfish abundance. Instead, substratum availability (lakes) and interactions between predation and substratum grain size (streams) need to be considered in order to predict crayfish abundance
    corecore