63 research outputs found

    Activation of the maternal immune system alters cerebellar development in the offspring

    Get PDF
    A common pathological finding in autism is a localized deficit in Purkinje cells (PCs). Cerebellar abnormalities have also been reported in schizophrenia. Using a mouse model that exploits a known risk factor for these disorders, maternal infection, we asked if the offspring of pregnant mice given a mid-gestation respiratory infection have cerebellar pathology resembling that seen in these disorders. We also tested the effects of maternal immune activation in the absence of virus by injection of the synthetic dsRNA, poly(I:C). We infected pregnant mice with influenza on embryonic day 9.5 (E9.5), or injected poly(I:C) i.p. on E12.5, and assessed the linear density of PCs in the cerebellum of adult or postnatal day 11 (P11) offspring. To study granule cell migration, we also injected BrdU on P11. Adult offspring of influenza- or poly(I:C)-exposed mice display a localized deficit in PCs in lobule VII of the cerebellum, as do P11 offspring. Coincident with this are heterotopic PCs, as well as delayed migration of granule cells in lobules VI and VII. The cerebellar pathology observed in the offspring of influenza- or poly(I:C)-exposed mice is strikingly similar to that observed in autism. The poly(I:C) findings indicate that deficits are likely caused by the activation of the maternal immune system. Finally, our data suggest that cerebellar abnormalities occur during embryonic development, and may be an early deficit in autism and schizophrenia

    Fostering equitable access to higher education in Hong Kong : a study of the tertiary financial assistance scheme

    Get PDF
    published_or_final_versionPolitics and Public AdministrationMasterMaster of Public Administratio

    Maximal HIV-1 Replication in Alveolar Macrophages during Tuberculosis Requires both Lymphocyte Contact and Cytokines

    Get PDF
    HIV-1 replication is markedly upregulated in alveolar macrophages (AM) during pulmonary tuberculosis (TB). This is associated with loss of an inhibitory CCAAT enhancer binding protein β (C/EBPβ) transcription factor and activation of nuclear factor (NF)-κB. Since the cellular immune response in pulmonary TB requires lymphocyte–macrophage interaction, a model system was developed in which lymphocytes were added to AM. Contact between lymphocytes and AM reduced inhibitory C/EBPβ, activated NF-κB, and enhanced HIV-1 replication. If contact between lymphocytes and macrophages was prevented, inhibitory C/EBPβ expression was maintained and the HIV-1 long terminal repeat (LTR) was not maximally stimulated although NF-κB was activated. Antibodies that cross-linked macrophage expressed B-7, and vascular cell adhesion molecule and CD40 were used to mimic lymphocyte contact. All three cross-linking antibodies were required to abolish inhibitory C/EBPβ expression. However, the HIV-1 LTR was not maximally stimulated and NF-κB was not activated. Maximal HIV-1–LTR stimulation required both lymphocyte-derived soluble factors, and cross-linking of macrophage expressed costimulatory molecules. High level HIV-1–LTR stimulation was also achieved when IL-1β, IL-6, and TNF-β were added to macrophages with cross-linked costimulatory molecules. Contact between activated lymphocytes and macrophages is necessary to down-regulate inhibitory C/EBPβ, thereby derepressing the HIV-1 LTR. Lymphocyte-derived cytokines activate NF-κB, further enhancing the HIV-1 LTR

    Host-dependent Lewis (Le) antigen expression in Helicobacter pylori cells recovered from Leb-transgenic mice

    Get PDF
    Variation of surface antigen expression is a mechanism used by microbes to adapt to and persist within their host habitats. Helicobacter pylori, a persistent bacterial colonizer of the human stomach, can alter its surface Lewis (Le) antigen expression. We examined H. pylori colonization in mice to test the hypothesis that host phenotype selects for H. pylori (Le) phenotypes. When wild-type and Leb-expressing transgenic FVB/N mice were challenged with H. pylori strain HP1, expressing Lex and Ley, we found that bacterial populations recovered after 8 mo from Leb-transgenic, but not wild-type, mice expressed Leb. Changes in Le phenotype were linked to variation of a putative galactosyltransferase gene (β-(1,3)galT); mutagenesis and complementation revealed its essential role in type I antigen expression. These studies indicate that H. pylori evolves to resemble the host's gastric Le phenotype, and reveal a bacterial genetic locus that is subject to host-driven selection pressure

    BING, a novel antimicrobial peptide isolated from Japanese medaka plasma, targets bacterial envelope stress response by suppressing cpxR expression

    Get PDF
    Antimicrobial peptides (AMPs) have emerged as a promising alternative to small molecule antibiotics. Although AMPs have previously been isolated in many organisms, efforts on the systematic identification of AMPs in fish have been lagging. Here, we collected peptides from the plasma of medaka (Oryzias latipes) fish. By using mass spectrometry, 6399 unique sequences were identified from the isolated peptides, among which 430 peptides were bioinformatically predicted to be potential AMPs. One of them, a thermostable 13-residue peptide named BING, shows a broad-spectrum toxicity against pathogenic bacteria including drug-resistant strains, at concentrations that presented relatively low toxicity to mammalian cell lines and medaka. Proteomic analysis indicated that BING treatment induced a deregulation of periplasmic peptidyl-prolyl isomerases in gram-negative bacteria. We observed that BING reduced the RNA level of cpxR, an upstream regulator of envelope stress responses. cpxR is known to play a crucial role in the development of antimicrobial resistance, including the regulation of genes involved in drug efflux. BING downregulated the expression of efflux pump components mexB, mexY and oprM in P. aeruginosa and significantly synergised the toxicity of antibiotics towards these bacteria. In addition, exposure to sublethal doses of BING delayed the development of antibiotic resistance. To our knowledge, BING is the first AMP shown to suppress cpxR expression in Gram-negative bacteria. This discovery highlights the cpxR pathway as a potential antimicrobial target

    Immunomodulation with Recombinant Interferon-γ1b in Pulmonary Tuberculosis

    Get PDF
    BACKGROUND:Current treatment regimens for pulmonary tuberculosis require at least 6 months of therapy. Immune adjuvant therapy with recombinant interferon-gamma1b (rIFN-gammab) may reduce pulmonary inflammation and reduce the period of infectivity by promoting earlier sputum clearance. METHODOLOGY/PRINCIPAL FINDINGS:We performed a randomized, controlled clinical trial of directly observed therapy (DOTS) versus DOTS supplemented with nebulized or subcutaneously administered rIFN-gamma1b over 4 months to 89 patients with cavitary pulmonary tuberculosis. Bronchoalveolar lavage (BAL) and blood were sampled at 0 and 4 months. There was a significant decline in levels of inflammatory cytokines IL-1beta, IL-6, IL-8, and IL-10 in 24-hour BAL supernatants only in the nebulized rIFN-gamma1b group from baseline to week 16. Both rIFN-gamma1b groups showed significant 3-fold increases in CD4+ lymphocyte response to PPD at 4 weeks. There was a significant (p = 0.03) difference in the rate of clearance of Mtb from the sputum smear at 4 weeks for the nebulized rIFN-gamma1b adjuvant group compared to DOTS or DOTS with subcutaneous rIFN-gamma1b. In addition, there was significant reduction in the prevalence of fever, wheeze, and night sweats at 4 weeks among patients receiving rFN-gamma1b versus DOTS alone. CONCLUSION:Recombinant interferon-gamma1b adjuvant therapy plus DOTS in cavitary pulmonary tuberculosis can reduce inflammatory cytokines at the site of disease, improve clearance of Mtb from the sputum, and improve constitutional symptoms. TRIAL REGISTRATION:ClinicalTrials.gov NCT00201123

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
    • …
    corecore