10 research outputs found

    A closer look into the microbiome of microalgal cultures

    Get PDF
    Although bacteria are commonly co-occurring in microalgal cultivation and production systems, little is known about their community structure and how it might be affected by specific microalgal groups or growth conditions. A better understanding about the underlying factors that determine the growth of specific bacterial populations is not only important for optimizing microalgal production processes, but also in the context of product quality when the algal biomass is to be used for future food or feed. We analyzed the bacterial community composition associated with nine microalgal strains in stock culture, maintained in two different growth media, to explore how specific taxonomic microalgal groups, microalgal origin, or the growth medium affect the bacterial community composition. Furthermore, we monitored the bacterial community composition for three Phaeodactylum strains during batch cultivation in bubble columns to examine if the bacterial composition alters during cultivation. Our results reveal that different microalgal genera, kept at the same cultivation conditions over many years, displayed separate and unique bacterial communities, and that different strains of the same genus had very similar bacterial community compositions, despite originating from different habitats. However, when maintained in a different growth medium, the bacterial composition changed for some. During batch cultivation, the bacterial community structure remained relatively stable for each Phaeodactylum strain. This indicates that microalgae seem to impact the development of the associated bacterial communities and that different microalgal genera could create distinct conditions that select for dominance of specific bacteria. However, other factors such as the composition of growth medium also affect the formation of the bacterial community structure

    Carotenoid fluorescence in Dunaliella salina

    Get PDF
    Dunaliella salina is a halotolerant green alga that is well known for its carotenoid producing capacity. The produced carotenoids are mainly stored in lipid globules. For various research purposes, such as production and extraction kinetics, we would like to determine and/or localise the carotenoid globules in vivo. In this study, we show that the carotenoid-rich globules emit clear green fluorescence, which can be used in, for example, fluorescence microscopy (e.g. CLSM) to obtain pictures of the cells and their carotenoid content

    The Selectivity of Milking of Dunaliella salina

    Get PDF
    The process of the simultaneous production and extraction of carotenoids, milking, of Dunaliella salina was studied. We would like to know the selectivity of this process. Could all the carotenoids produced be extracted? And would it be possible to vary the profile of the produced carotenoids and, consequently, influence the type of carotenoids extracted? By using three different D. salina strains and three different stress conditions, we varied the profiles of the carotenoids produced. Between Dunaliella bardawil and D. salina 19/18, no remarkable differences were seen in the extraction profiles, although D. salina 19/18 seemed to be better extractable. D. salina 19/25 was not “milkable” at all. The milking process could only be called selective for secondary carotenoids in case gentle mixing was used. In aerated flat-panel photobioreactors, extraction was much better, but selectiveness decreased and also chlorophyll and primary carotenoids were extracted. This was possibly related to cell damage due to shear stress

    Use of methylene blue uptake for assessing cell viability of colony-forming microalgae

    No full text
    During the past few years, interest in microalgae has grown, mainly because of their potential for biofuel production. Botryococcus braunii, a green microalga that can accumulate more than half of its dry weight as hydrocarbons, is one of the most important examples. This microorganism grows in colonies and there has been no reliable viability protocol reported for this species as yet. Knowing the number of dead cells in cultures is essential for the development of efficient bioprocesses such as non-destructive extraction procedures (“milking”) to obtain lipid soluble substances from microalgal biomass. Our study presents a simple colorimetric method to determine the proportion of living to dead cells in cultures, based on the uptake of methylene blue in solution by dead B. braunii cells. The main parameters influencing this process were investigated and used to develop a protocol. This technique was validated using flow cytometry and Neochloris oleoabundans, and appears not to be limited to use with B. braunii8174180COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPES6403-13-

    Outdoor performance of Chlorococcum littorale at different locations

    Get PDF
    Our goal in the present study was to evaluate the potential for lipid production of two cell populations of the marine microalgae Chlorococcum littorale under different climate conditions. We selected, in a previous study and via fluorescence activated cell sorting (FACS), a new cell population of Chlorococcum littorale, namely S5. S5 showed a stable doubled triacylglycerol (TAG) productivity in comparison with the original population. A previously developed model was expanded to include day:night cycles and validated to predict biomass and outdoor TAG productivities at different locations. Four different locations were chosen to simulate the response of C. littorale to different day lengths and light intensities (the Netherlands, Norway, Brazil and Spain). Indoor experiments (simulated summer) were carried out with Original and S5, showing that S5 had a doubled TAG productivity under N-starvation. Finally, simulations of biomass and TAG productivities of Original and S5 at different locations were performed. At locations with lower light intensities, Norway and the Netherland s, biomass productivities were higher than at locations with higher light intensities, Brazil/Spain. Such results might be associated with light-saturation effects. TAG productivities, however, showed no effect of local light intensity. Locations at higher latitudes, Norway/Netherlands, cannot sustain phototrophic year-round production, hence, the yearly average TAG productivities were doubled in Brazil/Spain (from 1.4–1.6 to 3.0–3.2 g m − 2 d − 1 ). Likewise, C. littorale S5 was simulated with doubled TAG productivities when compared with Original, at all locations (2.5–2.7 (low light) to 4.7–5.2 g m − 2 d − 1 (high light)). The present results confirm the industrial potential of Chlorococcum littorale, both Original and S5, as a source of TAG. Furthermore, our results can be used for comparison and to estimate future production scenarios
    corecore