65 research outputs found

    Crystal structure of the glycosyltransferase SnogD from the biosynthetic pathway of nogalamycin in Streptomyces nogalater

    Get PDF
    The glycosyltransferase SnogD from Streptomyces nogalater transfers a nogalamine moiety to the metabolic intermediate 3′,4′-demethoxynogalose-1-hydroxynogalamycinone during the final steps of biosynthesis of the aromatic polyketide nogalamycin. The crystal structure of recombinant SnogD, as an apo-enzyme and with a bound nucleotide, 2-deoxyuridine-5′-diphosphate, was determined to 2.6 Å resolution. Reductive methylation of SnogD was crucial for reproducible preparation of diffraction quality crystals due to creation of an additional intermolecular salt bridge between methylated lysine residue Lys384 and Glu374* from an adjacent molecule in the crystal lattice. SnogD is a dimer both in solution and in the crystal, and the enzyme subunit displays a fold characteristic of the GT-B family of glycosyltransferases. Binding of the nucleotide is associated with rearrangement of two active-site loops. Site-directed mutagenesis shows that two active-site histidine residues, His25 and His301, are critical for the glycosyltransferase activities of SnogD both in vivo and in vitro. The crystal structures and the functional data are consistent with a role for His301 in binding of the diphosphate group of the sugar donor substrate, and a function of His25 as a catalytic base in the glycosyl transfer reaction.VRPublishe

    The angle of a side-chain decides regio- and enantioselectivity in Alcohol Dehydrogenase A

    Get PDF
    Alcohol dehydrogenase A (ADH-A) from Rhodococcus ruber DSM 44541 is a promising biocatalyst for asymmetric synthesis of organic compounds.1 This enzyme is capable of catalyzing enantio- and regioselectivity of phenyl-substitute a-hydroxy ketones (acyloins), which are precursors for the synthesis of a range of biologically active compounds.1,2 ADH-A catalyzes the oxidation of (S)-1-phenylethanol 3000-fold more efficiently as compared to the 2-hydroxylated derivatives (R)-phenyl-1,2-ethanediol. ADH-A is highly selective towards secondary-alcohols and displays very low activities with corresponding primary-alcohol derivatives.2,3 Apparently, when this selectivity was tested with substrate contained two secondary-alcohols, we analyzed the catalytic efficiency and the regioselectivity towards (1R,2S)-2.2 The conclusions were yielded that ADH-A is a comparably inefficient catalyst for oxidation of vicinal diols, but displays regioselectivity, oxidizing primarily the benzylic carbon of this substrate.2 Please click Additional Files below to see the full abstract

    Antibodies to Cartilage Oligomeric Matrix Protein Are Pathogenic in Mice and May Be Clinically Relevant in Rheumatoid Arthritis

    Get PDF
    Objective. Cartilage oligomeric matrix protein (COMP) is an autoantigen in rheumatoid arthritis (RA) and experimental models of arthritis. This study was undertaken to investigate the structure, function, and relevance of anti-COMP antibodies. Methods. We investigated the pathogenicity of monoclonal anti-COMP antibodies in mice using passive transfer experiments, and we explored the interaction of anti-COMP antibodies with cartilage using immunohistochemical staining. The interaction of the monoclonal antibody 15A11 in complex with its specific COMP epitope P6 was determined by x-ray crystallography. An enzyme-linked immunosorbent assay and a surface plasma resonance technique were used to study the modulation of calcium ion binding to 15A11. The clinical relevance and value of serum IgG specific to the COMP P6 epitope and its citrullinated variants were evaluated in a large Swedish cohort of RA patients. Results. The murine monoclonal anti-COMP antibody 15A11 induced arthritis in naive mice. The crystal structure of the 15A11-P6 complex explained how the antibody could bind to COMP, which can be modulated by calcium ions. Moreover, serum IgG specific to the COMP P6 peptide and its citrullinated variants was detectable at significantly higher levels in RA patients compared to healthy controls and correlated with a higher disease activity score. Conclusion. Our findings provide the structural basis for binding a pathogenic anti-COMP antibody to cartilage. The recognized epitope can be citrullinated, and levels of antibodies to this epitope are elevated in RA patients and correlate with higher disease activity, implicating a pathogenic role of anti-COMP antibodies in a subset of RA patients.</p

    Intragenic deletions and a deep intronic mutation affecting pre-mRNA splicing in the dihydropyrimidine dehydrogenase gene as novel mechanisms causing 5-fluorouracil toxicity

    Get PDF
    Dihydropyrimidine dehydrogenase (DPD) is the initial enzyme acting in the catabolism of the widely used antineoplastic agent 5-fluorouracil (5FU). DPD deficiency is known to cause a potentially lethal toxicity following administration of 5FU. Here, we report novel genetic mechanisms underlying DPD deficiency in patients presenting with grade III/IV 5FU-associated toxicity. In one patient a genomic DPYD deletion of exons 21–23 was observed. In five patients a deep intronic mutation c.1129–5923C>G was identified creating a cryptic splice donor site. As a consequence, a 44 bp fragment corresponding to nucleotides c.1129–5967 to c.1129–5924 of intron 10 was inserted in the mature DPD mRNA. The deleterious c.1129–5923C>G mutation proved to be in cis with three intronic polymorphisms (c.483 + 18G>A, c.959–51T>G, c.680 + 139G>A) and the synonymous mutation c.1236G>A of a previously identified haplotype. Retrospective analysis of 203 cancer patients showed that the c.1129–5923C>G mutation was significantly enriched in patients with severe 5FU-associated toxicity (9.1%) compared to patients without toxicity (2.2%). In addition, a high prevalence was observed for the c.1129–5923C>G mutation in the normal Dutch (2.6%) and German (3.3%) population. Our study demonstrates that a genomic deletion affecting DPYD and a deep intronic mutation affecting pre-mRNA splicing can cause severe 5FU-associated toxicity. We conclude that screening for DPD deficiency should include a search for genomic rearrangements and aberrant splicing

    Crystallization and X-ray diffraction analysis of dihydropyrimidinase from Saccharomyces kluyveri

    No full text
    Dihydropyrimidinase from the yeast S. kluyveri was crystallized by vapour diffusion. The crystals belong to space group P21 (unit-cell parameters a = 91.0, b = 73.0, c = 161.4 Å, β = 91.4°) and diffracted to 2.6 Å resolution

    Crystallization and preliminary X-ray data analysis of β-alanine synthase from Drosophila melanogaster

    No full text
    β-Alanine synthase catalyzes the last step in the reductive degradation pathway for uracil and thymine. Crystals of the recombinant enzyme from D. melanogaster belong to space group C2. Diffraction data to 3.3 Å resolution were collected and analyzed

    Purification, crystallization and X-ray diffraction analysis of dihydropyrimidinase from Dictyostelium discoideum

    No full text
    Dihydropyrimidinase from the slime mould D. discoideum was crystallized. A single crystal was shown to belong to space group I222 and diffracted anisotropically to better than 1.8 Å
    corecore