130 research outputs found

    The Ubiquitin Ligase RPM-1 and the p38 MAPK PMK-3 Regulate AMPA Receptor Trafficking

    Get PDF
    Ubiquitination occurs at synapses, yet its role remains unclear. Previous studies demonstrated that the RPM-1 ubiquitin ligase organizes presynaptic boutons at neuromuscular junctions in C. elegans motorneurons. Here we find that RPM-1 has a novel postsynaptic role in interneurons, where it regulates the trafficking of the AMPA-type glutamate receptor GLR-1 from synapses into endosomes. Mutations in rpm-1 cause the aberrant accumulation of GLR-1 in neurites. Moreover, rpm-1 mutations enhance the endosomal accumulation of GLR-1 observed in mutants for lin-10, a Mint2 ortholog that promotes GLR-1 recycling from Syntaxin-13 containing endosomes. As in motorneurons, RPM-1 negatively regulates the pmk-3/p38 MAPK pathway in interneurons by repressing the protein levels of the MAPKKK DLK-1. This regulation of PMK-3 signaling is critical for RPM-1 function with respect to GLR-1 trafficking, as pmk-3 mutations suppress both lin-10 and rpm-1 mutations. Positive or negative changes in endocytosis mimic the effects of rpm-1 or pmk-3 mutations, respectively, on GLR-1 trafficking. Specifically, RAB-5(GDP), an inactive mutant of RAB-5 that reduces endocytosis, mimics the effect of pmk-3 mutations when introduced into wild-type animals, and occludes the effect of pmk-3 mutations when introduced into pmk-3 mutants. By contrast, RAB-5(GTP), which increases endocytosis, suppresses the effect of pmk-3 mutations, mimics the effect of rpm-1 mutations, and occludes the effect of rpm-1 mutations. Our findings indicate a novel specialized role for RPM-1 and PMK-3/p38 MAPK in regulating the endosomal trafficking of AMPARs at central synapses

    Characterization of a Dipartite Iron Uptake System from Uropathogenic \u3ci\u3eEscherichia coli\u3c/i\u3e Strain

    Get PDF
    In the uropathogenic Escherichia coli strain F11, in silico genome analysis revealed the dicistronic iron uptake operon fetMP, which is under iron-regulated control mediated by the Fur regulator. The expression of fetMP in a mutant strain lacking known iron uptake systems improved growth under iron depletion and increased cellular iron accumulation. FetM is a member of the iron/lead transporter superfamily and is essential for iron uptake by the Fet system. FetP is a periplasmic protein that enhanced iron uptake by FetM. Recombinant FetP bound Cu(II) and the iron analog Mn(II) at distinct sites. The crystal structure of the FetP dimer reveals a copper site in each FetP subunit that adopts two conformations: CuA with a tetrahedral geometry composed of His44, Met90, His97, and His127, and CuB, a second degenerate octahedral geometry with the addition of Glu46. The copper ions of each site occupy distinct positions and are separated by 1.3A . Nearby, a putative additional Cu(I) binding site is proposed as an electron source that may function with CuA/CuB displacement to reduce Fe(III) for transport by FetM. Together, these data indicate that FetMP is an additional iron uptake system composed of a putative iron permease and an iron-scavenging and potentially iron-reducing periplasmic protein

    A Multiscale Model for Solute Diffusion in Hydrogels.

    Get PDF
    The number of biomedical applications of hydrogels is increasing rapidly on account of their unique physical, structural, and mechanical properties. The utility of hydrogels as drug delivery systems or tissue engineering scaffolds critically depends on the control of diffusion of solutes through the hydrogel matrix. Predicting or even modeling this diffusion is challenging due to the complex structure of hydrogels. Currently, the diffusivity of solutes in hydrogels is typically modeled by one of three main theories proceeding from distinct diffusion mechanisms: (i) hydrodynamic, (ii) free volume, and (iii) obstruction theory. Yet, a comprehensive predictive model is lacking. Thus, time and capital-intensive trial-and-error procedures are used to test the viability of hydrogel applications. In this work, we have developed a model for the diffusivity of solutes in hydrogels combining the three main theoretical frameworks, which we call the multiscale diffusion model (MSDM). We verified the MSDM by analyzing the diffusivity of dextran of different sizes in a series of poly(ethylene glycol) (PEG) hydrogels with distinct mesh sizes. We measured the subnanoscopic free volume by positron annihilation lifetime spectroscopy (PALS) to characterize the physical hierarchy of these materials. In addition, we performed a meta-analysis of literature data from previous studies on the diffusion of solutes in hydrogels. The model presented outperforms traditional models in predicting solute diffusivity in hydrogels and provides a practical approach to predicting the transport properties of solutes such as drugs through hydrogels used in many biomedical applications

    Imaging PARP with [18F]rucaparib in pancreatic cancer models

    Get PDF
    PURPOSE: Rucaparib, an FDA-approved PARP inhibitor, is used as a single agent in maintenance therapy to provide promising treatment efficacy with an acceptable safety profile in various types of BRCA-mutated cancers. However, not all patients receive the same benefit from rucaparib-maintenance therapy. A predictive biomarker to help with patient selection for rucaparib treatment and predict clinical benefit is therefore warranted. With this aim, we developed [18F]rucaparib, an 18F-labelled isotopologue of rucaparib, and employed it as a PARP-targeting agent for cancer imaging with PET. Here, we report the in vitro and in vivo evaluation of [18F]rucaparib in human pancreatic cancer models. METHOD: We incorporated the positron-emitting 18F isotope into rucaparib, enabling its use as a PET imaging agent. [18F]rucaparib binds to the DNA damage repair enzyme, PARP, allowing direct visualisation and measurement of PARP in cancerous models before and after PARP inhibition or other genotoxic cancer therapies, providing critical information for cancer diagnosis and therapy. Proof-of-concept evaluations were determined in pancreatic cancer models. RESULTS: Uptake of [18F]rucaparib was found to be mainly dependent on PARP1 expression. Induction of DNA damage increased PARP expression, thereby increasing uptake of [18F]rucaparib. In vivo studies revealed relatively fast blood clearance of [18F]rucaparib in PSN1 tumour-bearing mice, with a tumour uptake of 5.5 ± 0.5%ID/g (1 h after i.v. administration). In vitro and in vivo studies showed significant reduction of [18F]rucaparib uptake by addition of different PARP inhibitors, indicating PARP-selective binding. CONCLUSION: Taken together, we demonstrate the potential of [18F]rucaparib as a non-invasive PARP-targeting imaging agent for pancreatic cancers

    [123I]CC1:A PARP-Targeting, Auger Electron-Emitting Radiopharmaceutical for Radionuclide Therapy of Cancer

    Get PDF
    Poly(adenosine diphosphate ribose) polymerase (PARP) has emerged as an effective therapeutic strategy against cancer that targets the DNA damage repair enzyme. PARP-targeting compounds radiolabeled with an Auger electron-emitting radionuclide can be trapped close to damaged DNA in tumor tissue, where high ionizing potential and short range lead Auger electrons to kill cancer cells through the creation of complex DNA damage, with minimal damage to surrounding normal tissue. Here, we report on [ 123I]CC1, an 123I-labeled PARP inhibitor for radioligand therapy of cancer.Methods: Copper-mediated 123I iododeboronation of a boronic pinacol ester precursor afforded [ 123I]CC1. The level and specificity of cell uptake and the therapeutic efficacy of [ 123I]CC1 were determined in human breast carcinoma, pancreatic adenocarcinoma, and glioblastoma cells. Tumor uptake and tumor growth inhibition of [ 123I]CC1 were assessed in mice bearing human cancer xenografts (MDA-MB-231, PSN1, and U87MG).Results: In vitro and in vivo studies showed selective uptake of [ 123I]CC1 in all models. Significantly reduced clonogenicity, a proxy for tumor growth inhibition by ionizing radiation in vivo, was observed in vitro after treatment with as little as 10 Bq [ 123I]CC1. Biodistribution at 1 h after intravenous administration showed PSN1 tumor xenograft uptake of 0.9 ± 0.06 percentage injected dose per gram of tissue. Intravenous administration of a relatively low amount of [ 123I]CC1 (3 MBq) was able to significantly inhibit PSN1 xenograft tumor growth but was less effective in xenografts that expressed less PARP. [ 123I]CC1 did not cause significant toxicity to normal tissues.Conclusion: Taken together, these results show the potential of [ 123I]CC1 as a radioligand therapy for PARP-expressing cancers. </p

    Radiofluorination of a highly potent ATM inhibitor as a potential PET imaging agent

    Get PDF
    PURPOSE: Ataxia telangiectasia mutated (ATM) is a key mediator of the DNA damage response, and several ATM inhibitors (ATMi) are currently undergoing early phase clinical trials for the treatment of cancer. A radiolabelled ATMi to determine drug pharmacokinetics could assist patient selection in a move towards more personalised medicine. The aim of this study was to synthesise and investigate the first 18F-labelled ATM inhibitor [18F]1 for non-invasive imaging of ATM protein and ATMi pharmacokinetics. METHODS: Radiofluorination of a confirmed selective ATM inhibitor (1) was achieved through substitution of a nitro-precursor with [18F]fluoride. Uptake of [18F]1 was assessed in vitro in H1299 lung cancer cells stably transfected with shRNA to reduce expression of ATM. Blocking studies using several non-radioactive ATM inhibitors assessed binding specificity to ATM. In vivo biodistribution studies were performed in wild-type and ATM-knockout C57BL/6 mice using PET/CT and ex vivo analysis. Uptake of [18F]1 in H1299 tumour xenografts was assessed in BALB/c nu/nu mice. RESULTS: Nitro-precursor 2 was synthesised with an overall yield of 12%. Radiofluorination of 2 achieved radiochemically pure [18F]1 in 80 ± 13 min with a radiochemical yield of 20 ± 13% (decay-corrected) and molar activities up to 79.5 GBq/μmol (n = 11). In vitro, cell-associated activity of [18F]1 increased over 1 h, and retention of [18F]1 dropped to 50% over 2 h. [18F]1 uptake did not correlate with ATM expression, but could be reduced significantly with an excess of known ATM inhibitors, demonstrating specific binding of [18F]1 to ATM. In vivo, fast hepatobiliary clearance was observed with tumour uptake ranging 0.13-0.90%ID/g after 1 h. CONCLUSION: Here, we report the first radiofluorination of an ATM inhibitor and its in vitro and in vivo biological evaluations, revealing the benefits but also some limitations of 18F-labelled ATM inhibitors

    Correlation between molar activity, injection mass and uptake of the PARP targeting radiotracer [F-18]olaparib in mouse models of glioma

    Get PDF
    Purpose Radiopharmaceuticals targeting poly(ADP-ribose) polymerase (PARP) have emerged as promising agents for cancer diagnosis and therapy. PARP enzymes are expressed in both cancerous and normal tissue. Hence, the injected mass, molar activity and potential pharmacological effects are important considerations for the use of radiolabelled PARP inhibitors for diagnostic and radionuclide therapeutic applications. Here, we performed a systematic evaluation by varying the molar activity of [F-18]olaparib and the injected mass of [F-Total]olaparib to investigate the effects on tumour and normal tissue uptake in two subcutaneous human glioblastoma xenograft models. Methods [F-18]Olaparib uptake was evaluated in the human glioblastoma models: in vitro on U251MG and U87MG cell lines, and in vivo on tumour xenograft-bearing mice, after administration of [F-Total]olaparib (varying injected mass: 0.04-8.0 mu g, and molar activity: 1-320 GBq/mu mol). Results Selective uptake of [F-18]olaparib was demonstrated in both models. Tumour uptake was found to be dependent on the injected mass of [F-Total]olaparib (mu g) but not the molar activity. An injected mass of 1 mu g resulted in the highest tumour uptake (up to 6.9 +/- 1.3%ID/g), independent of the molar activity. In comparison, both the lower and higher injected masses of [F-Total]olaparib resulted in lower relative tumour uptake (%ID/g; P 0.5 mu g). Conclusion Our findings show that the injected mass of [F-Total]olaparib has significant effects on tumour uptake. Moderate injected masses of PARP inhibitor-derived radiopharmaceuticals may lead to improved relative tumour uptake and tumour-to-background ratio for cancer diagnosis and radionuclide therapy

    Between Big City and Authentic Village: Branding the Small Chinese City

    Get PDF
    While recent academic research has already produced an impressive corpus on big cities such as Shanghai and Beijing, the small Chinese city has been mostly ignored. In this article, I suggest that consideration of the small city can bring a new perspective on the wider urban fabric of which it is an element. Although small city governments have embraced urban entrepreneurialism with the same enthusiasm as China’s big cities, different configurations of space, branding and the everyday have nevertheless resulted. My case study of Kaili in Guizhou province indicates that the small city exists in a complex relationship with the big city and the village; it is pulled towards large-scale urbanization while simultaneously attempting to construct a unique city image based upon the evocation of rural cultural practices. The perspective from the small city thus suggests the need to consider the rural-urban divide – long a dominant geographical imagination of China – alongside other geographies, including a triad of the small city, the village and the big city
    • …
    corecore