3,291 research outputs found

    Molecular ions in L1544. I. Kinematics

    Get PDF
    We have mapped the dense dark core L1544 in H13CO+(1-0), DCO+(2-1), DCO+(3-2), N2H+(1-0), NTH+(3-2), N2D+(2-1), N2D+(3-2), C18O(1-0), and C17O(1-0) using the IRAM 30-m telescope. We have obtained supplementary observations of HC18O+(1-0), HC17O+(1-0), and D13CO+(2-1). Many of the observed maps show a general correlation with the distribution of dust continuum emission in contrast to C18O(1-0) and C17O(1-0) which give clear evidence for depletion of CO at positions close to the continuum peak. In particular N2D+(2-1) and (3-2) and to a lesser extent N2H+(1-0) appear to be excellent tracers of the dust continuum. We find that the tracers of high density gas (in particular N2D+) show a velocity gradient along the minor axis of the L1544 core and that there is evidence for larger linewidths close to the dust emission peak. We interpret this using the model of the L1544 proposed by Ciolek & Basu (2000) and by comparing the observed velocities with those expected on the basis of their model. The results show reasonable agreement between observations and model in that the velocity gradient along the minor axis and the line broadening toward the center of L1544 are predicted by the model. This is evidence in favour of the idea that amipolar diffusion across field lines is one of the basic processes leading to gravitational collapse. However, line widths are significantly narrower than observed and are better reproduced by the Myers & Zweibel (2001) model which considers the quasistatic vertical contraction of a layer due to dissipation of its Alfvenic turbulence, indicating the importance of this process for cores in the verge of forming a star.Comment: 24 pages, 9 figures, to be published in Ap

    Understanding Emissions of Ammonia from Buildings and Application of Fertilizers: An Example from Poland

    Get PDF
    A Europe-wide dynamic ammonia (NH3) emissions model has been applied for one of the large agricultural countries in Europe, and its sensitivity on the distribution of emissions among different agricultural functions was analyzed by comparing with observed ammonia concentrations and by implementing all scenarios in a CTM model. The results suggest that the dynamic emission model is most sensitive to emission from animal manure, in particular how this is connected to national regulations. In contrast, the model is most robust with respect to emission from buildings and storage. To do this, we obtained activity information on agricultural operations at the sub-national level for Poland, information about infrastructure on storages and current regulations on manure practice from Polish authorities. The information was implemented in the existing emission model and was connected directly with the NWP calculations from the Weather Research and Forecasting model (WRF-ARW). The model was used to calculate four emission scenarios with high spatial (5 km x 5 km) and temporal resolution (3h) for the entire year 2010. In the four scenarios, we have compared the European-wide default model settings against: 1) a scenario that focuses on emission from agricultural buildings, 2) the existing emission method used in WRF-Chem in Poland, and 3) a scenario that takes into account Polish infrastructure and agricultural regulations. The ammonia emission was implemented into the chemical transport model FRAME and modelled ammonia concentrations was compared with measurements. The results suggest that the default setting in the dynamic model is an improvement compared to a non-dynamical emission profile. The results also show that further improvements can be obtained on the national scale by replacing the default information on manure practice with information that is connected with local practice and national regulations. Implementing a dynamical approach for simulation of ammonia emission is a viable objective for all CTM models that continue to use fixed emission profiles. Such models should handle ammonia emissions in a similar way to other climate dependent emissions (e.g. Biogenic Volatile Organic Compounds). Our results, compared with previous results from the DEHM and the GEOS-CHEM models, suggest that implementing dynamical approaches improves simulations in general even in areas with limited information about location of the agricultural fields, livestock and agricultural production methods such as Poland

    A randomised, controlled, observer-masked trial of corneal cross-linking for progressive keratoconus in children: the KERALINK protocol

    Get PDF
    INTRODUCTION: The KERALINK trial tests the hypothesis that corneal cross-linking (CXL) treatment reduces the progression of keratoconus in comparison to standard care in patients under 17 years old. KERALINK is a randomised controlled, observer-masked, multicentre trial in progressive keratoconus comparing epithelium-off CXL with standard care, including spectacles or contact lenses as necessary for best-corrected acuity. METHODS AND ANALYSIS: A total of 30 participants will be randomised per group. Eligible participants aged 10-16 years with progressive keratoconus in one or both eyes will be recruited. Following randomisation, participants will be followed up 3-monthly for 18 months. The effect on progression will be determined by K2 on corneal topography. The primary outcome measure is between-group difference in K2 at 18 months adjusted for K2 at baseline examination. Secondary outcomes are the effect of CXL on (1) keratoconus progression, (2) time to keratoconus progression, (3) visual acuity, (4) refraction, (5) apical corneal thickness and (6) adverse events. Patient-reported effects will be explored by questionnaires. ETHICS AND DISSEMINATION: Research Ethics Committee Approval was obtained on 30 June 2016 (ref: 14/LO/1937). Current protocol: V.5.0 (08/11/2017). Study findings will be published in peer-reviewed journals. TRIAL REGISTRATION NUMBER: European Union clinial trials register (EudraCT) 2016-001460-11

    Molecular ions in L1544. II. The ionization degree

    Get PDF
    The maps presented in Paper I are here used to infer the variation of the column densities of HCO+, DCO+, N2H+, and N2D+ as a function of distance from the dust peak. These results are interpreted with the aid of a crude chemical model which predicts the abundances of these species as a function of radius in a spherically symmetric model with radial density distribution inferred from the observations of dust emission at millimeter wavelengths and dust absorption in the infrared. Our main observational finding is that the N(N2D+)/N(N2H+) column density ratio is of order 0.2 towards the L1544 dust peak as compared to N(DCO+)/N(HCO+) = 0.04. We conclude that this result as well as the general finding that N2H+ and N2D+ correlate well with the dust is caused by CO being depleted to a much higher degree than molecular nitrogen in the high density core of L1544. Depletion also favors deuterium enhancement and thus N2D+, which traces the dense and highly CO-depleted core nucleus, is much more enhanced than DCO+. Our models do not uniquely define the chemistry in the high density depleted nucleus of L1544 but they do suggest that the ionization degree is a few times 10^{-9} and that the ambipolar diffusion time scale is locally similar to the free fall time. It seems likely that the lower limit which one obtains to ionization degree by summing all observable molecular ions is not a great underestimate of the true ionization degree. We predict that atomic oxygen is abundant in the dense core and, if so, H3O+ may be the main ion in the central highly depleted region of the core

    First Laboratory Detection of N13CO-and Semiexperimental Equilibrium Structure of the NCO-Anion

    Get PDF
    The cyanate anion (NCO-) is a species of considerable astrophysical relevance. It is widely believed to be embedded in interstellar ices present in young stellar objects but has not yet been detected in the dense gas of the interstellar medium. Here we report highly accurate laboratory measurements of the rotational spectrum of the N13CO-isotopologue at submillimeter wavelengths along with the detection of three additional lines of the parent isotopologue up to 437.4 GHz. With this new data, the rotational spectrum of both isotopologues can be predicted to better 0.25 km s-1in equivalent radial velocity up to 1 THz, more than adequate for an astronomical search in any source. Moreover, a semiexperimental equilibrium structure of the anion is derived by combining the experimental ground-state rotational constants of the two isotopologues with theoretical vibrational corrections, obtained by using the coupled-cluster method with inclusion of single and double excitations and perturbative inclusion of triple excitations (CCSD(T)). The estimated accuracy of the two bond distances is on the order of 5 × 10-4Å: a comparison to the values obtained by geometry optimization with the CCSD(T) method and the use of a composite scheme, including additivity and basis-set extrapolation techniques, reveals that this theoretical procedure is very accurate

    Etude de la dégradation de quelques composés organochlorés volatils par photolyse du peroxyde d'hydrogène en milieux aqueux

    Get PDF
    Le travail a eu pour but d'étudier l'efficacité de la photolyse du peroxyde d'hydrogène sur la dégradation de quelques composés organochlorés aliphatiques saturés (chiorométhanes et chloroéthanes) en milieu aqueux (pH 7,5). Les expériences ont été réalisées en réacteur statique, avec une Lampe basse pression à vapeur de mercure et avec des concentrations initiales en produit chloré de l'ordre de 10-6 mol l-1 et en H202 comprises entre 10-5 et 10-3 mol L-.Les résultats montrent que le système H202/UV peut oxyder les composés organochlorés étudiés à l'exception des composés ne possédant pas d'atome d'hydrogène (CCL4 et C2 CL6). Les rendements d'oxydation obtenus avec Le réacteur utilisé dépendent du temps de réaction, de la concentration initiale en H202, du flux photonique et peuvent être nettement diminués par la présence de pièges à radicaux (ions bicarbonates) dans le milieu réactionnel.Par ailleurs, une étude cinétique de la photolyse du peroxyde d'hydrogène en absence de matière organique est également présentée.The aim of this work was to study oxidation of certain volatile polychlorinated hydrocarbons, using hydrogen peroxide photoactivated by UV. This research was carried out with different mixtures of diluted aqueous solutions of chloromethanes (CHCl3, CCl4) and chloroethanes (C2H3Cl3, C2H2Cl4, C2HCl5, CCl6), which are typical halogenated compounds most frequently found in contaminated groundwater. The effect of the hydrogen peroxide concentration, the light intensity and the bicarbonate concentration on the rate of 1,1,2-trichloroethane (TCE) oxidation was determined. A kinetic study on hydrogen peroxide photolysis in a solution free of organic compounds was also carried out.EXPERIMENTATIONExperiments were conducted in a batch reactor (V = 4 l), equipped with an immersed mercury low-pressure lamp. The intensity emitted at 253.7 nm was roughly 2 1019 photons s-1. The temperature of the reaction mixture was maintained with a regulation system at 16 ± 0.5 °C (figure 1).The solutions were prepared in a phosphate buffer µ = 2 10-2 M, pH = 7.5). The outer surface of the lamp was masked with strips of aluminium, so as to obtain various percentages of initial energy (20 to 100 %).The concentration of the hydrogen peroxide of the samples was determined by spectrophotometry and the chlorinated compounds were analysed by electron capture gas chromatography.RESULTKinetics of hydrogen peroxide photolysis : H202 was decomposed by UV tb produce two hydroxyl radicals. In diluted solutions ([H202] < 10-3 M), the concentration decreases in accordante with a first order law. The rate constant depends on the initial light intensity (Io), on the characteristics of the reactor (volume and distance between the lamp and the watt. of the reactor) and on the motar extinction coefficient of the irradiated solution (equation C). The decomposition rate appears to be dependent on pH, the rate of constant rire has been found to be proportional to the dissociation of hydrogen peroxide into its basic form (EH2O2 = 20 mol-1 cm-1,EH2O2_ = 240 mol-1 cm-1) (figure 2 and 3).Oxidation of the chlorinated compounds : H202/UV is very efficient for the removal of organic compounds. Preliminary experiments showed that both UV and H2O2 treatments do not decompose halogenated compounds. Hydroxyl radicals are extremly reactive and attack organic compounds preferentialty by abs-tracting a hydrogen atom from an organic molecule. This is confirmed by the results which show that chloromethanes and chloroethanes with an H atom are eliminated, but net compounds such as tetrachloride and hexachloroethane (figure 4 to 7).The effectiveness of an H202/UV system depends on various parameters. Studies on the TCE elimination show that the oxidation yields an increase when the reaction time, the UV irradiation dose (figure 9b) and the hydrogen peroxide concentration (figure 8) increase. However, the efficiency decreases in the presence of radical traps such as bicarbonate and carbonate ions (figure 10)

    Application of WRF-Chem to Forecasting PM10 Concentration over Poland

    Get PDF
    The meteorological and chemical transport model WRF-Chem was implemented to forecast PM10 concentrations over Poland. WRF-Chem version 3.5 was configured with three one way nested domains using the GFS meteorological data and the TNO MACC II emissions. Forecasts, with 48h lead time, were run for a winter and summer period 2014. WRF-Chem in general captures the variability in observed PM10 concentrations, but underestimates some peak concentrations during winter-time. The peaks coincide with either stable atmospheric condition during nighttime in the lower part of the planetary boundary layer or on days with very low surface temperatures. Such episodes lead to increased combustion in residential heating, where hard coal is the main fuel in Poland. This suggests that a key to improvement in the model performance for the peak concentrations is to focus on the simulation of PBL processes and the distribution of emissions with high resolution in WRF-Chem

    Application of WRF-Chem to Forecasting PM10 Concentration Over Poland

    Get PDF
    The meteorological and chemical transport model WRF-Chem was implemented to forecast PM10 concentrations over Poland. WRF-Chem version 3.5 was configured with three one-way nested domains using the GFS meteorological data and the TNO MACC II emissions. The 48 hour forecasts were run for each day of the winter and summer period of 2014 and there is only a small decrease in model performance for winter with respect to forecast lead time. The model in general captures the variability in observed PM10 concentrations for most of the stations. However, for some locations and specific episodes, the model performance is poor and the results cannot yet be used by official authorities. We argue that a higher resolution sector-based emission data will be helpful for this analysis in connection with a focus on planetary boundary layer processes in WRF-Chem and their impact on the initial distribution of emissions on both time and space

    Application of WRF-Chem to Forecast PM10 Concentrations Over Poland

    Get PDF
    The meteorological and chemical transport model WRF-Chem has been implemented to forecast PM10 concentrations over Poland. WRF-Chem version 3.5 was configured with three one way nested domains and the simulations were driven by the GFS meteorological data and the TNO MACC II emissions. The Regional Acid Deposition Model (RADM2) gas phase chemistry and the Modal Aerosol Dynamics Model for Europe with Secondary Organic Aerosol Model (MADE/SORGAM) aerosol module were applied in WRF-Chem. Forecasts were run 48 hours ahead for each day during a winter period from the 1st January to 28th February 2014. We have found that the model for most stations captures the variability of observed PM10 concentrations, whereas the highest observed peaks are often underestimated. Several of the peaks coincide with either stable atmospheric condition during nighttime in the lower part of the planetary boundary layer or on days with very low surface temperatures. This suggests that a key to a good simulation of the peak concentrations is to focus on the simulation of PBL processes and the distribution of emissions with high resolution in WRF-Che

    Molecular ions in L1544. II. The ionization degree

    Get PDF
    The maps presented in Paper I are here used to infer the variation of the column densities of HCO+, DCO+, N2H+, and N2D+ as a function of distance from the dust peak. These results are interpreted with the aid of a crude chemical model which predicts the abundances of these species as a function of radius in a spherically symmetric model with radial density distribution inferred from the observations of dust emission at millimeter wavelengths and dust absorption in the infrared. Our main observational finding is that the N(N2D+)/N(N2H+) column density ratio is of order 0.2 towards the L1544 dust peak as compared to N(DCO+)/N(HCO+) = 0.04. We conclude that this result as well as the general finding that N2H+ and N2D+ correlate well with the dust is caused by CO being depleted to a much higher degree than molecular nitrogen in the high density core of L1544. Depletion also favors deuterium enhancement and thus N2D+, which traces the dense and highly CO-depleted core nucleus, is much more enhanced than DCO+. Our models do not uniquely define the chemistry in the high density depleted nucleus of L1544 but they do suggest that the ionization degree is a few times 10^{-9} and that the ambipolar diffusion time scale is locally similar to the free fall time. It seems likely that the lower limit which one obtains to ionization degree by summing all observable molecular ions is not a great underestimate of the true ionization degree. We predict that atomic oxygen is abundant in the dense core and, if so, H3O+ may be the main ion in the central highly depleted region of the core.Comment: 31 pages, 8 figures, to be published in Ap
    corecore