2,023 research outputs found

    Early Dark Energy Cosmologies

    Full text link
    We propose a novel parameterization of the dark energy density. It is particularly well suited to describe a non-negligible contribution of dark energy at early times and contains only three parameters, which are all physically meaningful: the fractional dark energy density today, the equation of state today and the fractional dark energy density at early times. As we parameterize Omega_d(a) directly instead of the equation of state, we can give analytic expressions for the Hubble parameter, the conformal horizon today and at last scattering, the sound horizon at last scattering, the acoustic scale as well as the luminosity distance. For an equation of state today w_0 < -1, our model crosses the cosmological constant boundary. We perform numerical studies to constrain the parameters of our model by using Cosmic Microwave Background, Large Scale Structure and Supernovae Ia data. At 95% confidence, we find that the fractional dark energy density at early times Omega_early < 0.06. This bound tightens considerably to Omega_early < 0.04 when the latest Boomerang data is included. We find that both the gold sample of Riess et. al. and the SNLS data by Astier et. al. when combined with CMB and LSS data mildly prefer w_0 < -1, but are well compatible with a cosmological constant.Comment: 6 pages, 3 figures; references added, matches published versio

    Z7Z_7 Orbifold Models in M-Theory

    Full text link
    Among T7/ΓT^7/\Gamma orbifold compactifications of MM-theory, we examine models containing the particle physics Standard Model in four-dimensional spacetimes, which appear as fixed subspaces of the ten-dimensional spacetimes at each end of the interval, I1S1/Z2I^1\simeq S^1/Z_2, spanning the 11th11^\text{th} dimension. Using the Z7Z_7 projection to break the E8E_8 gauge symmetry in each of the four-planes and a limiting relation to corresponding heterotic string compactifications, we discuss the restrictions on the possible resulting gauge field and matter spectra. In particular, some of the states are non-local: they connect two four-dimensional Worlds across the 11th11^\text{th} dimension. We illustrate our programmable calculations of the matter field spectrum, including the anomalous U(1) factor which satisfies a universal Green-Schwarz relation, discuss a Dynkin diagram technique to showcase a model with SU(3)×SU(2)×U(1)5SU(3)\times SU(2)\times U(1)^5 gauge symmetry, and discuss generalizations to higher order orbifolds.Comment: 23 pages, 2 figures, 4 tables; LaTeX 3 time

    Arithmetic Spacetime Geometry from String Theory

    Full text link
    An arithmetic framework to string compactification is described. The approach is exemplified by formulating a strategy that allows to construct geometric compactifications from exactly solvable theories at c=3c=3. It is shown that the conformal field theoretic characters can be derived from the geometry of spacetime, and that the geometry is uniquely determined by the two-dimensional field theory on the world sheet. The modular forms that appear in these constructions admit complex multiplication, and allow an interpretation as generalized McKay-Thompson series associated to the Mathieu and Conway groups. This leads to a string motivated notion of arithmetic moonshine.Comment: 36 page

    Bose-Einstein condensate dark matter phase transition from finite temperature symmetry breaking of Klein-Gordon fields

    Full text link
    In this paper the thermal evolution of scalar field dark matter particles at finite cosmological temperatures is studied. Starting with a real scalar field in a thermal bath and using the one loop quantum corrections potential, we rewrite Klein-Gordon's (KG) equation in its hydrodynamical representation and study the phase transition of this scalar field due to a Z_2 symmetry breaking of its potential. A very general version of a nonlinear Schr\"odinger equation is obtained. When introducing Madelung's representation, the continuity and momentum equations for a non-ideal SFDM fluid are formulated, and the cosmological scenario with the SFDM described in analogy to an imperfect fluid is then considered where dissipative contributions are obtained in a natural way.Additional terms appear compared to those obtained in the classical version commonly used to describe the \LambdaCDM model, i.e., the ideal fluid. The equations and parameters that characterize the physical properties of the system such as its energy, momentum and viscous flow are related to the temperature of the system, scale factor, Hubble's expansion parameter and the matter energy density. Finally, some details on how galaxy halos and smaller structures might be able to form by condensation of this SF are given.Comment: Substantial changes have been made to the paper, following the referees recommendations. 16 pages. Published in Classical and Quantum Gravit

    Non-uniform doping across the Fermi surface of NbS2_2 intercalates

    Full text link
    Magnetic ordering of the first row transition metal intercalates of NbS2_2 due to coupling between the conduction electrons and the intercalated ions has been explained in terms of Fermi surface nesting. We use angle-resolved photoelectron spectroscopy to investigate the Fermi surface topology and the valence band structure of the quasi-two-dimensional layer compounds Mn1/3_{1/3}NbS2_2 and Ni1/3_{1/3}NbS2_2. Charge transfer from the intercalant species to the host layer leads to non-uniform, pocket selective doping of the Fermi surface. The implication of our results on the nesting properties are discussed

    Radiative transfer effects in primordial hydrogen recombination

    Get PDF
    The calculation of a highly accurate cosmological recombination history has been the object of particular attention recently, as it constitutes the major theoretical uncertainty when predicting the angular power spectrum of Cosmic Microwave Background anisotropies. Lyman transitions, in particular the Lyman-alpha line, have long been recognized as one of the bottlenecks of recombination, due to their very low escape probabilities. The Sobolev approximation does not describe radiative transfer in the vicinity of Lyman lines to a sufficient degree of accuracy, and several corrections have already been computed in other works. In this paper, the impact of some previously ignored radiative transfer effects is calculated. First, the effect of Thomson scattering in the vicinity of the Lyman-alpha line is evaluated, using a full redistribution kernel incorporated into a radiative transfer code. The effect of feedback of distortions generated by the optically thick deuterium Lyman-alpha line blueward of the hydrogen line is investigated with an analytic approximation. It is shown that both effects are negligible during cosmological hydrogen recombination. Secondly, the importance of high-lying, non overlapping Lyman transitions is assessed. It is shown that escape from lines above Ly-gamma and frequency diffusion in Ly-beta and higher lines can be neglected without loss of accuracy. Thirdly, a formalism generalizing the Sobolev approximation is developed to account for the overlap of the high-lying Lyman lines, which is shown to lead to negligible changes to the recombination history. Finally, the possibility of a cosmological hydrogen recombination maser is investigated. It is shown that there is no such maser in the purely radiative treatment presented here.Comment: 23 pages, 4 figures, to be submitted to PR

    Autopsy in adults with congenital heart disease (ACHD).

    Get PDF
    The adult congenital heart diseases (ACHD) population is exceeding the pediatric congenital heart diseases (CHD) population and is progressively expanding each year, representing more than 90% of patients with CHD. Of these, about 75% have undergone surgical and/or percutaneous intervention for palliation or correction. Autopsy can be a very challenging procedure in ACHD patients. The approach and protocol to be used may vary depending on whether the pathologists are facing native disease without surgical or percutaneous interventions, but with various degrees of cardiac remodeling, or previously palliated or corrected CHD. Moreover, interventions for the same condition have evolved over the last decades, as has perioperative myocardial preservations and postoperative care, with different long-term sequelae depending on the era in which patients were operated on. Careful clinicopathological correlation is, thus, required to assist the pathologist in performing the autopsy and reaching a diagnosis regarding the cause of death. Due to the heterogeneity of the structural abnormalities, and the wide variety of surgical and interventional procedures, there are no standard methods for dissecting the heart at autopsy. In this paper, we describe the most common types of CHDs that a pathologist could encounter at autopsy, including the various types of surgical and percutaneous procedures and major pathological manifestations. We also propose a practical systematic approach to the autopsy of ACHD patients

    Early Dark Energy at High Redshifts: Status and Perspectives

    Full text link
    Early dark energy models, for which the contribution to the dark energy density at high redshifts is not negligible, influence the growth of cosmic structures and could leave observable signatures that are different from the standard cosmological constant cold dark matter (Λ\LambdaCDM) model. In this paper, we present updated constraints on early dark energy using geometrical and dynamical probes. From WMAP five-year data, baryon acoustic oscillations and type Ia supernovae luminosity distances, we obtain an upper limit of the dark energy density at the last scattering surface (lss), ΩEDE(zlss)<2.3×102\Omega_{\rm EDE}(z_{\rm lss})<2.3\times10^{-2} (95% C.L.). When we include higher redshift observational probes, such as measurements of the linear growth factors, Gamma-Ray Bursts (GRBs) and Lyman-α\alpha forest (\lya), this limit improves significantly and becomes ΩEDE(zlss)<1.4×103\Omega_{\rm EDE}(z_{\rm lss})<1.4\times10^{-3} (95% C.L.). Furthermore, we find that future measurements, based on the Alcock-Paczy\'nski test using the 21cm neutral hydrogen line, on GRBs and on the \lya forest, could constrain the behavior of the dark energy component and distinguish at a high confidence level between early dark energy models and pure Λ\LambdaCDM. In this case, the constraints on the amount of early dark energy at the last scattering surface improve by a factor ten, when compared to present constraints. We also discuss the impact on the parameter γ\gamma, the growth rate index, which describes the growth of structures in standard and in modified gravity models.Comment: 11 pages, 9 figures and 4 table

    Access and metro network convergence for flexible end-to-end network design

    Get PDF
    This paper reports on the architectural, protocol, physical layer, and integrated testbed demonstrations carried out by the DISCUS FP7 consortium in the area of access - metro network convergence. Our architecture modeling results show the vast potential for cost and power savings that node consolidation can bring. The architecture, however, also recognizes the limits of long-reach transmission for low-latency 5G services and proposes ways to address such shortcomings in future projects. The testbed results, which have been conducted end-to-end, across access - metro and core, and have targeted all the layers of the network from the application down to the physical layer, show the practical feasibility of the concepts proposed in the project
    corecore