75 research outputs found

    7-Hydroxylation of warfarin is strongly inhibited by sesamin, but not by episesamin, caffeic and ferulic acids in human hepatic microsomes

    Get PDF
    © 2018 Elsevier Ltd Warfarin is a commonly used anticoagulant drug and is a derivate of coumarin. Cytochrome P450 2C9 (CYP2C9) plays the key role in transformation of coumarin and thus, influences determination of warfarin dosage. A number of factors including dietary compounds such as sesamin, caffeic acid and ferulic acids can regulate the activity of CYP2C9. The present study tested the hypothesis that sesamin, episesamin, caffeic acid and ferulic acid decreases the rate of warfarin 7-hydroxylation via inhibition of hepatic CYP2C9. The experiments were conducted on hepatic microsomes from human donors. It was demonstrated that the rate of 7-hydroxylation of warfarin was significantly decreased in the presence of sesamin in the range of concentrations from 5 to 500 nM, and was not affected by episesamin, caffeic acid and ferulic acid in the same range of concentrations. The kinetic analysis indicated non-competitive type of inhibition by sesamin with Ki = 202 ± 18 nM. In conclusion, the results of our in vitro study revealed that sesamin was able to inhibit formation of a major metabolite of warfarin, 7-hydroxywarfarin. The potentially negative consequences of the consumption of high amounts of sesamin-containing food or dietary supplements in warfarin-treated patients need to be further studied

    A novel electroanalytical approach to the measurement of B vitamins in food supplements based on screen-printed carbon sensors

    Get PDF
    © 2017 Elsevier B.V. This paper describes the development of a novel electrochemical assay for the measurement of water-soluble vitamins in food and pharmaceutical products. The optimum conditions for the determination of vitamin B1 (thiamine), B2 (riboflavin) and B6 (pyridoxine) in phosphate buffer were established using cyclic voltammetry in conjunction with screen printed carbon electrodes (SPCEs). The optimum current response for all three vitamins was achieved in 0.1 M phosphate buffer pH 11 using an initial potential of −1.0 V. Using square wave voltammetry, the linear ranges for thiamine, riboflavin, and pyridoxine were found to be: 15–110 µg/ml, 0.1–20 µg/ml, and 2–80 µg/ml respectively. The application of the method to a commercial food product yielded a recovery of 95.78% for riboflavin, with a coefficient of variation (CV) of 3.38% (n = 5). The method was also applied to a multi-vitamin supplement for the simultaneous determination of thiamine, riboflavin and pyridoxine. In both cases only simple dilution with buffer followed by centrifugation was required prior to analysis. The resulting square wave voltammetric signals were completely resolved with Ep values of −0.7 V, +0.2 V, and +0.6 V respectively. The recoveries determined for the vitamin B complex in a commercial supplement product were found to be 110%, 114%, and 112% respectively (CV = 7.14%, 6.28%. 5.66% respectively, n = 5)

    An electrocatalytic screen-printed amperometric sensor for the selective measurement of thiamine (Vitamin B1) in food supplements

    Get PDF
    An electrocatalytic screen-printed sensor has been investigated for the measurement of the biologically important biomolecule vitamin B1 (thiamine) for the first time in food supplements. Under basic conditions, the vitamin was converted to its electrochemically active thiolate anion species. It was shown that an electrocatalytic oxidation reaction occurred with the screen-printed carbon electrode containing the mediator cobalt phthalocyanine (CoPC-SPCE). This had the advantage of producing an analytical response current at an operating potential of 0 V vs. Ag/AgCl compared to +0.34 V obtained with plain SPCEs. This resulted in improved selectivity and limit of detection. Detailed studies on the underlying mechanism occurring with the sensor are reported in this paper. A linear response was obtained between 0.1 and 20 µg mL −1 , which was suitable for the quantification of the vitamin in two commercial products containing vitamin B1. The mean recovery for a multivitamin tablet with a declared content of 5 mg was 101% (coefficient of variation (CV) of 9.6%). A multivitamin drink, which had a much lower concentration of vitamin B1 (0.22 mg/100 mL), gave a mean recovery of 93.3% (CV 7.2%). These results indicate that our sensor holds promise for quality control of food supplements and other food types
    • …
    corecore