174 research outputs found

    Comparing the strength of diagonally non-recursive functions in the absence of ÎŁ02 induction

    Get PDF
    We prove that the statement there is a k such that for every f there is a k-bounded diagonally non-recursive function relative to f does not imply weak K\ onig\u27s lemma over RCA0+BÎŁ02. This answers a question posed by Simpson. A recursion-theoretic consequence is that the classic fact that every k-bounded diagonally non-recursive function computes a 2-bounded diagonally non-recursive function may fail in the absence of IÎŁ02

    Comparing the strength of diagonally non-recursive functions in the absence of Sigma^0_2 induction

    Get PDF
    We prove that the statement “there is a k such that for every f there is a k-bounded diagonally nonrecursive function relative to f” does not imply weak König’s lemma over . This answers a question posed by Simpson. A recursion-theoretic consequence is that the classic fact that every k-bounded diagonally nonrecursive function computes a 2-bounded diagonally nonrecursive function may fail in the absence of

    Louisville Seamount Trail: implications for geodynamic mantle flow models and the geochemical evolution of primary hotspots

    Get PDF
    The Louisville Seamount Trail is a 4300 km long volcanic chain that has been built in the past 80 m.y. as the Pacific plate moved over a persistent mantle melting anomaly or hotspot. Because of its linear morphology and its long-lived age-progressive volcanism, Louisville is the South Pacific counterpart of the much better studied Hawaiian-Emperor Seamount Trail. Together, Louisville and Hawaii are textbook examples of two primary hotspots that have been keystones in deciphering the motion of the Pacific plate relative to a set of "fixed" deep-mantle plumes. However, drilling during Ocean Drilling Program (ODP) Leg 197 in the Emperor Seamounts documented a large ~15° southward motion of the Hawaiian hotspot prior to 50 Ma. Is it possible that the Hawaiian and Louisville hotspots moved in concert and thus constitute a moving reference frame for modeling plate motion in the Pacific? Alternatively, could they have moved independently, as predicted by mantle flow models that reproduce the observed latitudinal motion for Hawaii but that predict a largely longitudinal shift for the Louisville hotspot? These two end-member geodynamic models were tested during Integrated Ocean Drilling Program (IODP) Expedition 330 to the Louisville Seamount Trail. In addition, existing data from dredged lavas suggest that the mantle plume source of the Louisville hotspot has been remarkably homogeneous for as long as 80 m.y. These lavas are predominantly alkali basalts and likely represent a mostly alkalic shield-building stage, which is in sharp contrast to the massive tholeiitic shield-building stage of Hawaiian volcanoes. Geochemical and isotopic data for the recovered lavas during Expedition 330 will provide insights into the magmatic evolution and melting processes of individual Louisville volcanoes, their progression from shield-building to postshield and (maybe) posterosional stages, the temperature and depth of partial melting of their mantle plume source, and the enigmatic long-lived and apparent geochemical homogeneity of the Louisville mantle source. Collectively, this will enable us to characterize the Louisville Seamount Trail as a product of one of the few global primary hotspots, to better constrain its plume-lithosphere interactions, and to further test the hypothesis that the Ontong Java Plateau formed from the plume head of the Louisville mantle plume around 120 Ma. During Expedition 330 we replicated the drilling strategy of Leg 197, the first expedition to provide compelling evidence for the motion of the Hawaiian mantle plume between 80 and 50 Ma. For that reason we targeted Louisville seamounts that have ages similar to Detroit, Suiko, Nintoku, and Koko Seamounts in the Emperor Seamount Trail. In total, five seamounts were drilled in the Louisville Seamount Trail: Canopus, Rigil, Burton, Achernar, and Hadar Guyots (old to young). By analyzing a large number of time-independent in situ lava flows (and other volcanic eruptive products) from these seamounts using modern paleomagnetic, 40Ar/39Ar geochronological, and geochemical techniques, we will be able to directly compare the paleolatitude estimates and geochemical signatures between the two longest-lived hotspot systems in the Pacific Ocean. We drilled into the summits of the five Louisville guyots and reached volcanic basement at four of these drilling targets. In two cases we targeted larger seamount structures and drilled near the flanks of these ancient volcanoes, and in the other three cases we selected smaller edifices that we drilled closer to their centers. Drilling and logging plans for each of these sites were similar, with coring reaching 522.0 meters below seafloor (mbsf) for Site U1374 and 232.9, 65.7, 11.5, 182.8, and 53.3 mbsf for Sites U1372, U1373, U1375, U1376, and U1377, respectively. Some Expedition 330 drill sites were capped with only a thin layer of pelagic ooze between 6.6 and 13.5 m thick, and, if present, these were cored by using a low-rotation gravity-push technique with the rotary core barrel to maximize recovery. However, at Sites U1373 and U1376 no pelagic ooze was present, and the holes needed to be started directly into cobble-rich hardgrounds. In all cases, the bulk of the seamount sediment cover comprised sequences of volcanic sandstones and various kinds of basalt breccia or basalt conglomerate, which often were interspersed with basaltic lava flows, the spatter/tephra products of submarine eruptions, or other volcanic products, including auto-brecciated flows or peperites. Also several intervals of carbonate were cored, with the special occurrence of a ~15 m thick algal limestone reef at Site U1376 on Burton Guyot. In addition, some condensed pelagic limestone units were recovered on three of the other seamounts, but these did not exceed 30 cm in thickness. Despite their limited presence in the drilled sediment, these limestones provide valuable insights for the paleoclimate record at high ~50° southern latitudes since Mesozoic times. Several Louisville sites progressed from subaerial conditions in the top of volcanic basement into submarine eruptive environments, or drilling of the igneous basement immediately started in submarine volcanic sequences, as was the case for Sites U1376 and U1377 on Burton and Hadar Guyots. At three sites we cored >100 m into the igneous basement: 187.3 m at Site U1372, 505.3 m at Site U1374, and 140.9 m at Site U1376. At the other sites we did not core into basement (Site U1375) or we cored only 38.2 m (Site U1377) because of unstable hole conditions. Even so, drilling during Expedition 330 resulted in a large number of in situ lava flows, pillow basalts, or other types of volcanic products such as auto-brecciated lava flows, intrusive sheets or dikes, and peperites. In particular, the three holes on Canopus and Rigil Guyots (the two oldest seamounts drilled in the Louisville Seamount Trail), resulted in adequate numbers of in situ lava flows to average out paleosecular variation, with probable eruption ages estimated at ~78 and 73 Ma, respectively. Remarkably, at all drill sites large quantities of hyaloclastites, volcanic sandstones, and basaltic breccias were also recovered, which in many cases show consistent paleomagnetic inclinations compared to the lava flows bracketing these units. For Site U1374 on Rigil Guyot we also observed a magnetic polarity reversal in the cored sequence. Overall, this is very promising for determining a reliable paleolatitude record for the Louisville Seamounts following detailed postcruise examinations. The deeper penetrations of several hundred meters required bit changes and reentries using free-fall funnels. Basement penetration rates were 1.8–2.5 m/h depending on drill depth. In total, 1114 m of sediment and igneous basement at five seamounts was drilled, and 806 m was recovered (average recovery = 72.4%). At Site U1374 on Rigil Guyot, a total of 522 m was drilled, with a record-breaking 87.8% recovery. Most outstandingly, nearly all Expedition 330 core material is characterized by low degrees of alteration, providing us with a large quantity of samples of mostly well-preserved basalt, containing, for example, pristine olivine crystals with melt inclusions, fresh volcanic glass, unaltered plagioclase, carbonate, zeolite and celadonite alteration minerals, various micro- and macrofossils, and, in one case, mantle xenoliths and xenocrysts. The large quantity and excellent quality of the recovered sample material allow us to address all the scientific objectives of this expedition and beyond

    Queer Youth and the Culture Wars: From Classroom to Courtroom in Australia, Canada and the United States

    Get PDF
    This article builds on Lugg\u27s (2006) discussion of surveillance in public schools and how queer youth are resisting schools\u27 current efforts to regulate sexual orientation and gender expression in the U.S. and internationally. Legal complaints initiated by queer youth against their schools for harassment and access to extra-curricular activities are discussed. The number of cases in the past five years has increased significantly and the courts are siding with the youth and their allies, demonstrating that queer youth are significantly impacting the dismantling of heteronormative regulatory regimes and improving the school experiences for themselves and queer adults

    Choice-Disability and HIV Infection: A Cross Sectional Study of HIV Status in Botswana, Namibia and Swaziland

    Get PDF
    Interpersonal power gradients may prevent people implementing HIV prevention decisions. Among 7,464 youth aged 15–29 years in Botswana, Namibia and Swaziland we documented indicators of choice-disability (low education, educational disparity with partner, experience of sexual violence, experience of intimate partner violence (IPV), poverty, partner income disparity, willingness to have sex without a condom despite believing partner at risk of HIV), and risk behaviours like inconsistent use of condoms and multiple partners. In Botswana, Namibia and Swaziland, 22.9, 9.1, and 26.1% women, and 8.3, 2.8, and 9.3% men, were HIV positive. Among both women and men, experience of IPV, IPV interacted with age, and partner income disparity interacted with age were associated with HIV positivity in multivariate analysis. Additional factors were low education (for women) and poverty (for men). Choice disability may be an important driver of the AIDS epidemic. New strategies are needed that favour the choice-disabled

    Using Light to Improve Commercial Value

    Get PDF
    The plasticity of plant morphology has evolved to maximize reproductive fitness in response to prevailing environmental conditions. Leaf architecture elaborates to maximize light harvesting, while the transition to flowering can either be accelerated or delayed to improve an individual's fitness. One of the most important environmental signals is light, with plants using light for both photosynthesis and as an environmental signal. Plants perceive different wavelengths of light using distinct photoreceptors. Recent advances in LED technology now enable light quality to be manipulated at a commercial scale, and as such opportunities now exist to take advantage of plants' developmental plasticity to enhance crop yield and quality through precise manipulation of a crops' lighting regime. This review will discuss how plants perceive and respond to light, and consider how these specific signaling pathways can be manipulated to improve crop yield and quality
    • 

    corecore