702 research outputs found

    Differential regulation of mammalian and avian ATOH1 by E2F1 and its implication for hair cell regeneration in the inner ear

    Get PDF
    The mammalian inner ear has a limited capacity to regenerate its mechanosensory hair cells. This lack of regenerative capacity underlies the high incidence of age-related hearing loss in humans. In contrast, non-mammalian vertebrates can form new hair cells when damage occurs, a mechanism that depends on re-activation of expression of the pro-hair cell transcription factor Atoh1. Here, we show that members of the E2F transcription factor family, known to play a key role in cell cycle progression, regulate the expression of Atoh1. E2F1 activates chicken Atoh1 by directly interacting with a cis-regulatory region distal to the avian Atoh1 gene. E2F does not activate mouse Atoh1 gene expression, since this regulatory element is absent in mammals. We also show that E2F1 expression changes dynamically in the chicken auditory epithelium during ototoxic damage and hair cell regeneration. Therefore, we propose a model in which the mitotic regeneration of non-mammalian hair cells is due to E2F1-mediated activation of Atoh1 expression, a mechanism which has been lost in mammals

    Kinetic and thermodynamic behavior of co-pyrolysis of olive pomace and thermoplastic waste via thermogravimetric analysis

    Get PDF
    This work represents the first attempt to analyze kinetics, thermodynamics and reaction mechanism of olive pomace (OP) and waste plastic materials (PM) co-pyrolysis. Among PM, polypropylene (PP), polystyrene (PS), high density polypropylene (HDPE), polyvinyl chloride (PVC) and poly (ethylene terephthalate) glycol (PETG) were selected. Non-isothermal TG experiments were carried out under inert conditions at four heating rates, namely 5, 10, 20 and 40 °C/min. The kinetic triplet for raw materials and their blends was determined using Starink, Kissinger-Akahira-Sunose and Ozawa-Flynn-Wall iso-conversional models. Pyrolysis mechanism reactions were explained by diverse models, depending on thermal degradation progress. Results shown that co-pyrolysis followed a complex multi-step reaction mechanism. A synergistic effect was detected during co-pyrolysis of OP/PM mixtures. The addition of 50 % (w/w) OP biomass to PM waste decreased the energy of activation (Ea) from 50 to 25 % for all blends, except for PVC/OP. Thermodynamic analysis reveals that adding OP generally reduces the energy barrier (ΔH), except for PS-OP, and improves energy efficiency (ΔG) by facilitating radical formation and molecular chain cleavage. As a conclusion, this study may open up new avenues for waste valorization and resource recovery. Thus, it may contribute to the transition towards a circular and sustainable economy, through zero waste goal

    Kinetic and thermodynamic behavior of co-pyrolysis of olive pomace and thermoplastic waste via thermogravimetric analysis

    Get PDF
    This work represents the first attempt to analyze kinetics, thermodynamics and reaction mechanism of olive pomace (OP) and waste plastic materials (PM) co-pyrolysis. Among PM, polypropylene (PP), polystyrene (PS), high density polypropylene (HDPE), polyvinyl chloride (PVC) and poly (ethylene terephthalate) glycol (PETG) were selected. Non-isothermal TG experiments were carried out under inert conditions at four heating rates, namely 5, 10, 20 and 40 °C/min. The kinetic triplet for raw materials and their blends was determined using Starink, Kissinger-Akahira-Sunose and Ozawa-Flynn-Wall iso-conversional models. Pyrolysis mechanism reactions were explained by diverse models, depending on thermal degradation progress. Results shown that co-pyrolysis followed a complex multi-step reaction mechanism. A synergistic effect was detected during co-pyrolysis of OP/PM mixtures. The addition of 50 % (w/w) OP biomass to PM waste decreased the energy of activation (Ea) from 50 to 25 % for all blends, except for PVC/OP. Thermodynamic analysis reveals that adding OP generally reduces the energy barrier (ΔH), except for PS-OP, and improves energy efficiency (ΔG) by facilitating radical formation and molecular chain cleavage. As a conclusion, this study may open up new avenues for waste valorization and resource recovery. Thus, it may contribute to the transition towards a circular and sustainable economy, through zero waste goal

    Interrelationship Between Broadband NIRS Measurements of Cerebral Cytochrome C Oxidase and Systemic Changes Indicates Injury Severity in Neonatal Encephalopathy

    Get PDF
    Perinatal hypoxic ischaemic encephalopathy (HIE) is associated with severe neurodevelopmental problems and mortality. There is a clinical need for techniques to provide cotside assessment of the injury extent. This study aims to use non-invasive cerebral broadband near-infrared spectroscopy (NIRS) in combination with systemic physiology to assess the severity of HIE injury. Broadband NIRS is used to measure the changes in haemodynamics, oxygenation and the oxidation state of cytochrome c oxidase (oxCCO). We used canonical correlation analysis (CCA), a multivariate statistical technique, to measure the relationship between cerebral broadband NIRS measurements and systemic physiology. A strong relationship between the metabolic marker, oxCCO, and systemic changes indicated severe brain injury; if more than 60 % of the oxCCO signal could be explained by the systemic variations, then the neurodevelopmental outcome was poor. This boundary has high sensitivity and specificity (100 and 83 %, respectively). Broadband NIRS measured concentration changes of the oxidation state of cytochrome c oxidase has the potential to become a useful cotside tool for assessment of injury severity following hypoxic ischaemic brain injury

    Actividades prácticas “animadas e interactivas” sobre plataforma web facilitadoras de la apropiación del conocimiento

    Get PDF
    Este proyecto surge con el propósito de diseñar herramientas interactivas sobre una plataforma web escrita en HTML5 para la enseñanza de Matemática en los Ciclos Nivelatorio y Básico de las carreras de Ingeniería de la UNC, facilitando afianzar en los alumnos conceptos y procedimientos. Atento a ofrecer un recurso didáctico “responsivo” o adaptativo como fuente de motivación y participación en su proceso de aprendizaje que mediante animaciones simplifique la comprensión en temas donde los estudiantes presenten inconvenientes en la elaboración del conocimiento, corroborando resultados de lo antes generado en papel a partir de una ecuación para explorar qué sucede al modificar parámetros a través de las distintas visualizaciones gráficas y su proceso inverso. Sin tiempo y espacio específico practicar sobre la tarea académica, esclarecer dudas en su interpretación; todo de modo amigable, interactivo y atemporal. Siempre con la idea de brindar como promotora potencial de nuevos aprendizajes y con la atención que hoy en día la misma despierta en los jóvenes de esa edad, una herramienta visual diferente al video, como lo es la animación interactiva. Priorizando en esta primera etapa la articulación entre el secundario y el comienzo del recorrido en el estudio universitario.Red de Universidades con Carreras en Informátic

    Site‐specific weed management—constraints and opportunities for the weed research community: Insights from a workshop

    Get PDF
    The adoption of site‐specific weed management (SSWM) technologies by farmers is not aligned with the scientific achievements in this field. While scientists have demonstrated significant success in real‐time weed identification, phenotyping and accurate weed mapping by using various sensors and platforms, the integration by farmers of SSWM and weed phenotyping tools into weed management protocols is limited. This gap was therefore a central topic of discussion at the most recent workshop of the SSWM Working Group arranged by the European Weed Research Society (EWRS). This insight paper aims to summarise the presentations and discussions of some of the workshop panels and to highlight different aspects of weed identification and spray application that were thought to hinder SSWM adoption. It also aims to share views and thoughts regarding steps that can be taken to facilitate future implementation of SSWM

    Androgen receptor gene polymorphism influence fat accumulation: a longitudinal study from adolescence to adult age.

    Full text link
    To determine the influence of androgen receptor CAG and GGN repeat polymorphisms on fat mass and maximal fat oxidation (MFO), CAG and GGN repeat lengths were measured in 128 young boys, from which longitudinal data were obtained in 45 of them [mean?±?SD: 12.8?±?3.6 years old at recruitment, and 27.0?±?4.8 years old at adult age]. Subjects were grouped as CAG short (CAGS ) if harboring repeat lengths ?21, the rest as CAG long (CAGL ); and GGN short (GGNS ) if GGN repeat lengths ?23, or long if >?23 (GGNL ). CAGS and GGNS were associated with lower adiposity than CAGL or GGNL (P?<?0.05). There was an association between the logarithm of CAG repeats polymorphism and the changes of body mass (r?=?0.34, P?=?0.03). At adult age, CAGS men showed lower accumulation of total body and trunk fat mass, and lower resting metabolic rate (RMR) and MFO per kg of total lean mass compared with CAGL (P?<?0.05). GGNS men also showed lower percentage of body fat (P?<?0.05). In summary, androgen receptor CAG and GGN repeat polymorphisms are associated with RMR, MFO, fat mass, and its regional distribution in healthy male adolescents, influencing fat accumulation from adolescence to adult age
    corecore