1,950 research outputs found

    Push-Pull Block Puzzles are Hard

    Full text link
    This paper proves that push-pull block puzzles in 3D are PSPACE-complete to solve, and push-pull block puzzles in 2D with thin walls are NP-hard to solve, settling an open question by Zubaran and Ritt. Push-pull block puzzles are a type of recreational motion planning problem, similar to Sokoban, that involve moving a `robot' on a square grid with 1×11 \times 1 obstacles. The obstacles cannot be traversed by the robot, but some can be pushed and pulled by the robot into adjacent squares. Thin walls prevent movement between two adjacent squares. This work follows in a long line of algorithms and complexity work on similar problems. The 2D push-pull block puzzle shows up in the video games Pukoban as well as The Legend of Zelda: A Link to the Past, giving another proof of hardness for the latter. This variant of block-pushing puzzles is of particular interest because of its connections to reversibility, since any action (e.g., push or pull) can be inverted by another valid action (e.g., pull or push).Comment: Full version of CIAC 2017 paper. 17 page

    Stability of Relativistic Matter with Magnetic Fields for Nuclear Charges up to the Critical Value

    Get PDF
    We give a proof of stability of relativistic matter with magnetic fields all the way up to the critical value of the nuclear charge Zα=2/πZ\alpha=2/\pi.Comment: LaTeX2e, 12 page

    Vertex Fault Tolerant Additive Spanners

    Full text link
    A {\em fault-tolerant} structure for a network is required to continue functioning following the failure of some of the network's edges or vertices. In this paper, we address the problem of designing a {\em fault-tolerant} additive spanner, namely, a subgraph HH of the network GG such that subsequent to the failure of a single vertex, the surviving part of HH still contains an \emph{additive} spanner for (the surviving part of) GG, satisfying dist(s,t,H∖{v})≤dist(s,t,G∖{v})+βdist(s,t,H\setminus \{v\}) \leq dist(s,t,G\setminus \{v\})+\beta for every s,t,v∈Vs,t,v \in V. Recently, the problem of constructing fault-tolerant additive spanners resilient to the failure of up to ff \emph{edges} has been considered by Braunschvig et. al. The problem of handling \emph{vertex} failures was left open therein. In this paper we develop new techniques for constructing additive FT-spanners overcoming the failure of a single vertex in the graph. Our first result is an FT-spanner with additive stretch 22 and O~(n5/3)\widetilde{O}(n^{5/3}) edges. Our second result is an FT-spanner with additive stretch 66 and O~(n3/2)\widetilde{O}(n^{3/2}) edges. The construction algorithm consists of two main components: (a) constructing an FT-clustering graph and (b) applying a modified path-buying procedure suitably adopted to failure prone settings. Finally, we also describe two constructions for {\em fault-tolerant multi-source additive spanners}, aiming to guarantee a bounded additive stretch following a vertex failure, for every pair of vertices in S×VS \times V for a given subset of sources S⊆VS\subseteq V. The additive stretch bounds of our constructions are 4 and 8 (using a different number of edges)

    The Konkoly Blazhko Survey: Is light-curve modulation a common property of RRab stars?

    Full text link
    A systematic survey to establish the true incidence rate of the Blazhko modulation among short-period, fundamental-mode, Galactic field RR Lyrae stars has been accomplished. The Konkoly Blazhko Survey (KBS) was initiated in 2004. Since then more than 750 nights of observation have been devoted to this project. A sample of 30 RRab stars was extensively observed, and light-curve modulation was detected in 14 cases. The 47% occurrence rate of the modulation is much larger than any previous estimate. The significant increase of the detected incidence rate is mostly due to the discovery of small-amplitude modulation. Half of the Blazhko variables in our sample show modulation with so small amplitude that definitely have been missed in the previous surveys. We have found that the modulation can be very unstable in some cases, e.g. RY Com showed regular modulation only during one part of the observations while during two seasons it had stable light curve with abrupt, small changes in the pulsation amplitude. This type of light-curve variability is also hard to detect in other Survey's data. The larger frequency of the light-curve modulation of RRab stars makes it even more important to find the still lacking explanation of the Blazhko phenomenon. The validity of the [Fe/H](P,phi_{31}) relation using the mean light curves of Blazhko variables is checked in our sample. We have found that the formula gives accurate result for small-modulation-amplitude Blazhko stars, and this is also the case for large-modulation-amplitude stars if the light curve has complete phase coverage. However, if the data of large-modulation-amplitude Blazhko stars are not extended enough (e.g. < 500 data points from < 15 nights), the formula may give false result due to the distorted shape of the mean light curve used.Comment: Accepted for publication in MNRAS, 14 pages, 7 Figure

    Secure and linear cryptosystems using error-correcting codes

    Full text link
    A public-key cryptosystem, digital signature and authentication procedures based on a Gallager-type parity-check error-correcting code are presented. The complexity of the encryption and the decryption processes scale linearly with the size of the plaintext Alice sends to Bob. The public-key is pre-corrupted by Bob, whereas a private-noise added by Alice to a given fraction of the ciphertext of each encrypted plaintext serves to increase the secure channel and is the cornerstone for digital signatures and authentication. Various scenarios are discussed including the possible actions of the opponent Oscar as an eavesdropper or as a disruptor

    Estimating specific surface area of fine stream bed sediments from geochemistry

    Get PDF
    Specific surface area (SSA) of headwater stream bed sediments is a fundamental property which determines the nature of sediment surface reactions and influences ecosystem-level, biological processes. Measurements of SSA – commonly undertaken by BET nitrogen adsorption – are relatively costly in terms of instrumentation and operator time. A novel approach is presented for estimating fine (2.5 mg kg−1), four elements were identified as significant predictors of SSA (ordered by decreasing predictive power): V > Ca > Al > Rb. The optimum model from these four elements accounted for 73% of the variation in bed sediment SSA (range 6–46 m2 g−1) with a root mean squared error of prediction – based on leave-one-out cross-validation – of 6.3 m2 g−1. It is believed that V is the most significant predictor because its concentration is strongly correlated both with the quantity of Fe-oxides and clay minerals in the stream bed sediments, which dominate sediment SSA. Sample heterogeneity in SSA – based on triplicate measurements of sub-samples – was a substantial source of variation (standard error = 2.2 m2 g−1) which cannot be accounted for in the regression model. The model was used to estimate bed sediment SSA at the other 1792 sites and at 30 duplicate sites where an extra sediment sample had been collected, 25 m from the original site. By delineating sub-catchments for the headwater sediment sites only those sub-catchments were selected with a dominant (>50% of the sub-catchment area) bedrock formation and land use type; the bedrock and land use classes accounted for 39% and 7% of the variation in bed sediment SSA, respectively. Variation in estimated, fine bed sediment SSA from the paired, duplicate sediment sites was small (2.7 m2 g−1), showing that local variation in SSA at stream sites is modest when compared to that between catchments. How the approach might be applied in other environments and its potential limitations are discussed

    DNA BARCODING OF FISH SPECIES FROM THE MEDITERRANEAN COAST OF ISRAEL

    Get PDF
    Accurately-classified genomic data in the Barcode of Life Data System (BOLD) database is vital to the protection and conservation of marine biodiversity in the Mediterranean Sea. The taxonomic classifications of 468 fish of 50 Mediterranean species were analyzed using the BOLD Identifier tool for variation in the cytochrome oxidase subunit I (COI) mitochondrial gene. Within species, nucleotide maximum composite likelihood was low with a mean of 0.0044±0.0008. Three presumptive species had significantly higher values e.g., Arnoglossus spp. (0.07), Torquigener flavimaculosus (0.013) and Boops boops (0.028). However, samples of Arnoglossus species were sub-classified into two groups that were finally identified as two different species e.g., Arnoglossus laterna and Arnoglossus thori. For the different species, BLAST searches against the BOLD database using our DNA barcoding data as the query sequences designated the most similar targets into groups. For each analyzed species, the similarity of the first and second threshold groups ranged from 95 to 99% and from 83 to 98%, respectively. Sequence based classification for the first threshold group was concordant with morphology-based identification. However, for 34 analyzed species (68%) overlaps of species between the two threshold groups hampered classification. Tree-based phylogeny analysis detected more than one cluster in the first threshold group for 22 out of 50 species, representing genetic subgroups and geographic origins. There was a tendency for higher conservation and lower number of clusters in the Lessepsian (Red Sea) migrant versus indigenous species

    Local Guarantees in Graph Cuts and Clustering

    Full text link
    Correlation Clustering is an elegant model that captures fundamental graph cut problems such as Min s−ts-t Cut, Multiway Cut, and Multicut, extensively studied in combinatorial optimization. Here, we are given a graph with edges labeled ++ or −- and the goal is to produce a clustering that agrees with the labels as much as possible: ++ edges within clusters and −- edges across clusters. The classical approach towards Correlation Clustering (and other graph cut problems) is to optimize a global objective. We depart from this and study local objectives: minimizing the maximum number of disagreements for edges incident on a single node, and the analogous max min agreements objective. This naturally gives rise to a family of basic min-max graph cut problems. A prototypical representative is Min Max s−ts-t Cut: find an s−ts-t cut minimizing the largest number of cut edges incident on any node. We present the following results: (1)(1) an O(n)O(\sqrt{n})-approximation for the problem of minimizing the maximum total weight of disagreement edges incident on any node (thus providing the first known approximation for the above family of min-max graph cut problems), (2)(2) a remarkably simple 77-approximation for minimizing local disagreements in complete graphs (improving upon the previous best known approximation of 4848), and (3)(3) a 1/(2+ε)1/(2+\varepsilon)-approximation for maximizing the minimum total weight of agreement edges incident on any node, hence improving upon the 1/(4+ε)1/(4+\varepsilon)-approximation that follows from the study of approximate pure Nash equilibria in cut and party affiliation games
    • …
    corecore