13 research outputs found

    Detection of intracellular gene expression in live cells of murine, human and porcine origin using fluorescence-labeled nanoparticles.

    No full text
    The reprogramming of somatic cells to induced pluripotent stem cells (iPS) has successfully been performed in different mammalian species including mouse, rat, human, pig and others. The verification of iPS clones mainly relies on the detection of the endogenous expression of different pluripotency genes. These genes mostly represent transcription factors which are located in the cell nucleus. Traditionally, the proof of their endogenous expression is supplied by immunohistochemical staining after fixation of the cells. This approach requires replicate cultures of each clone at this early stage to preserve validated clones for further experiments. The present protocol describes an approach with gene-specific nanoparticles which allows the evaluation of intracellular gene expression directly in live cells by fluorescence. The nanoparticles consist of a central gold particle coupled to a capture strand carrying a sequence complementary to the target mRNA as well as a quenched reporter strand. These nanoparticles are actively endocytosed and the target mRNA displaces the reporter strand which then start to fluoresce. Therefore, specific target gene expression can be detected directly under the microscope. In addition, the emitted fluorescence allows the identification, isolation and enrichment of cells expressing a specific gene by flow cytometry. This method can be applied directly to live cells in culture without any manipulation of the target cells

    Live fluorescent RNA-based detection of pluripotency gene expression in embryonic and induced pluripotent stem cells of different species.

    No full text
    The generation of induced pluripotent stem (iPS) cells has successfully been achieved in many species. However, the identification of truly reprogrammed iPS cells still remains laborious and the detection of pluripotency markers requires fixation of cells in most cases. Here, we report an approach with nanoparticles carrying Cy3-labeled sense oligonucleotide reporter strands coupled to gold-particles. These molecules are directly added to cultured cells without any manipulation and gene expression is evaluated microscopically after overnight incubation. To simultaneously detect gene expression in different species, probe sequences were chosen according to interspecies homology. With a common target-specific probe we could successfully demonstrate expression of the GAPDH house-keeping gene in somatic cells and expression of the pluripotency markers NANOG and GDF3 in embryonic stem cells and iPS cells of murine, human, and porcine origin. The population of target gene positive cells could be purified by fluorescence-activated cell sorting. After lentiviral transduction of murine tail-tip fibroblasts Nanog-specific probes identified truly reprogrammed murine iPS cells in situ during development based on their Cy3-fluorescence. The intensity of Nanog-specific fluorescence correlated positively with an increased capacity of individual clones to differentiate into cells of all three germ layers. Our approach offers a universal tool to detect intracellular gene expression directly in live cells of any desired origin without the need for manipulation, thus allowing conservation of the genetic background of the target cell. Furthermore, it represents an easy, scalable method for efficient screening of pluripotency which is highly desirable during high-throughput cell reprogramming and after genomic editing of pluripotent stem cells

    Skin \u3b1-synuclein aggregation seeding activity as a novel biomarker for parkinson disease

    No full text
    Importance: Deposition of the pathological \u3b1-synuclein (\u3b1SynP) in the brain is the hallmark of synucleinopathies, including Parkinson disease (PD), Lewy body dementia (LBD), and multiple system atrophy (MSA). Whether real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA) assays can sensitively detect skin biomarkers for PD and non-PD synucleinopathies remains unknown. Objective: To develop sensitive and specific skin biomarkers for antemortem diagnosis of PD and other synucleinopathies. Design, Setting, and Participants: This retrospective and prospective diagnostic study evaluated autopsy and biopsy skin samples from neuropathologically and clinically diagnosed patients with PD and controls without PD. Autopsy skin samples were obtained at 3 medical centers from August 2016 to September 2019, and biopsy samples were collected from 3 institutions from August 2018 to November 2019. Based on neuropathological and clinical diagnoses, 57 cadavers with synucleinopathies and 73 cadavers with nonsynucleinopathies as well as 20 living patients with PD and 21 living controls without PD were included. Specifically, cadavers and participants had PD, LBD, MSA, Alzheimer disease, progressive supranuclear palsy, or corticobasal degeneration or were nonneurodegenerative controls (NNCs). A total of 8 approached biopsy participants either refused to participate in or were excluded from this study due to uncertain clinical diagnosis. Data were analyzed from September 2019 to April 2020. Main Outcomes and Measures: Skin \u3b1SynPseeding activity was analyzed by RT-QuIC and PMCA assays. Results: A total of 160 autopsied skin specimens from 140 cadavers (85 male cadavers [60.7%]; mean [SD] age at death, 76.8 [10.1] years) and 41 antemortem skin biopsies (27 male participants [66%]; mean [SD] age at time of biopsy, 65.3 [9.2] years) were analyzed. RT-QuIC analysis of \u3b1SynPseeding activity in autopsy abdominal skin samples from 47 PD cadavers and 43 NNCs revealed 94% sensitivity (95% CI, 85-99) and 98% specificity (95% CI, 89-100). As groups, RT-QuIC also yielded 93% sensitivity (95% CI, 85-97) and 93% specificity (95% CI, 83-97) among 57 cadavers with synucleinopathies (PD, LBD, and MSA) and 73 cadavers without synucleinopathies (Alzheimer disease, progressive supranuclear palsy, corticobasal degeneration, and NNCs). PMCA showed 82% sensitivity (95% CI, 76-88) and 96% specificity (95% CI, 85-100) with autopsy abdominal skin samples from PD cadavers. From posterior cervical and leg skin biopsy tissues from patients with PD and controls without PD, the sensitivity and specificity were 95% (95% CI, 77-100) and 100% (95% CI, 84-100), respectively, for RT-QuIC and 80% (95% CI, 49-96) and 90% (95% CI, 60-100) for PMCA. Conclusions and Relevance: This study provides proof-of-concept that skin \u3b1SynPseeding activity may serve as a novel biomarker for antemortem diagnoses of PD and other synucleinopathies

    Congenital heart disease risk loci identified by genome-wide association study in European patients.

    No full text
    Genetic factors undoubtedly affect the development of congenital heart disease (CHD) but still remain ill defined. We sought to identify genetic risk factors associated with CHD and to accomplish a functional analysis of SNP-carrying genes. We performed a genome-wide association study (GWAS) of 4034 White patients with CHD and 8486 healthy controls. One SNP on chromosome 5q22.2 reached genome-wide significance across all CHD phenotypes and was also indicative for septal defects. One region on chromosome 20p12.1 pointing to the MACROD2 locus identified 4 highly significant SNPs in patients with transposition of the great arteries (TGA). Three highly significant risk variants on chromosome 17q21.32 within the GOSR2 locus were detected in patients with anomalies of thoracic arteries and veins (ATAV). Genetic variants associated with ATAV are suggested to influence the expression of WNT3, and the variant rs870142 related to septal defects is proposed to influence the expression of MSX1. We analyzed the expression of all 4 genes during cardiac differentiation of human and murine induced pluripotent stem cells in vitro and by single-cell RNA-Seq analyses of developing murine and human hearts. Our data show that MACROD2, GOSR2, WNT3, and MSX1 play an essential functional role in heart development at the embryonic and newborn stages

    Sequential defects in cardiac lineage commitment and maturation cause hypoplastic left heart syndrome.

    Get PDF
    BACKGROUND: Complex molecular programs in specific cell lineages govern human heart development. Hypoplastic left heart syndrome (HLHS) is the most common and severe manifestation within the spectrum of left ventricular outflow tract obstruction defects occurring in association with ventricular hypoplasia. The pathogenesis of HLHS is unknown, but hemodynamic disturbances are assumed to play a prominent role. METHODS: To identify perturbations in gene programs controlling ventricular muscle lineage development in HLHS, we performed whole-exome sequencing of 87 HLHS parent-offspring trios, nuclear transcriptomics of cardiomyocytes from ventricles of 4 patients with HLHS and 15 controls at different stages of heart development, single cell RNA sequencing, and 3D modeling in induced pluripotent stem cells from 3 patients with HLHS and 3 controls. RESULTS: Gene set enrichment and protein network analyses of damaging de novo mutations and dysregulated genes from ventricles of patients with HLHS suggested alterations in specific gene programs and cellular processes critical during fetal ventricular cardiogenesis, including cell cycle and cardiomyocyte maturation. Single-cell and 3D modeling with induced pluripotent stem cells demonstrated intrinsic defects in the cell cycle/unfolded protein response/autophagy hub resulting in disrupted differentiation of early cardiac progenitor lineages leading to defective cardiomyocyte subtype differentiation/maturation in HLHS. Premature cell cycle exit of ventricular cardiomyocytes from patients with HLHS prevented normal tissue responses to developmental signals for growth, leading to multinucleation/polyploidy, accumulation of DNA damage, and exacerbated apoptosis, all potential drivers of left ventricular hypoplasia in absence of hemodynamic cues. CONCLUSIONS: Our results highlight that despite genetic heterogeneity in HLHS, many mutations converge on sequential cellular processes primarily driving cardiac myogenesis, suggesting novel therapeutic approaches

    Amino Acid Metabolism in Dairy Cows and their Regulation in Milk Synthesis

    No full text

    International Guillain-Barré Syndrome Outcome Study: protocol of a prospective observational cohort study on clinical and biological predictors of disease course and outcome in Guillain-Barré syndrome

    No full text
    Guillain-Barré syndrome (GBS) is an acute polyradiculoneuropathy with a highly variable clinical presentation, course, and outcome. The factors that determine the clinical variation of GBS are poorly understood which complicates the care and treatment of individual patients. The protocol of the ongoing International GBS Outcome Study (IGOS), a prospective, observational, multicenter cohort study that aims to identify the clinical and biological determinants and predictors of disease onset, subtype, course and outcome of GBS is presented here. Patients fulfilling the diagnostic criteria for GBS, regardless of age, disease severity, variant forms, or treatment, can participate if included within 2 weeks after onset of weakness. Information about demography, preceding infections, clinical features, diagnostic findings, treatment, course, and outcome is collected. In addition, cerebrospinal fluid and serial blood samples for serum and DNA is collected at standard time points. The original aim was to include at least 1,000 patients with a follow-up of 1–3 years. Data are collected via a web-based data entry system and stored anonymously. IGOS started in May 2012 and by January 2017 included more than 1,400 participants from 143 active centers in 19 countries across 5 continents. The IGOS data/biobank is available for research projects conducted by expertise groups focusing on specific topics including epidemiology, diagnostic criteria, clinimetrics, electrophysiology, antecedent events, antibodies, genetics, prognostic modeling, treatment effects, and long-term outcome of GBS. The IGOS will help to standardize the international collection of data and biosamples for future research of GBS
    corecore