3 research outputs found

    Local flow topologies and scalar structures in turbulent combustion

    Get PDF
    El objetivo de este trabajo es investigar los procesos de mezcla y combusti贸n turbulentas mediante el estudio de las estructuras de las peque帽as escalas de los campos de velocidad y escalar. Se usan varias simulaciones num茅ricas directas (SND) y diferentes bases de datos para turbulencia estad铆sticamente estacionaria, homog茅nea e incompresible, as铆 como para llamas premezcladas turbulentas - una de las llamas con una configuraci贸n de flujo de entrada-salida, y otra en un chorro con un co-flujo de productos calientes. Los casos de flujos de densidad constante tanto con mezcla como reacci贸n se han obtenido con diferentes n煤meros de Schmidt. Para las dos llamas premezcladas turbulentas, el dominio computacional se ha dividido en cuatro regiones ('reactantes frescos', 'regi贸n de precalentamiento', 'regi贸n de quemado' y 'productos calientes'), caracterizadas por los valores de la tasa de reacci贸n qu铆mica o, equivalentemente, del escalar. Se han identificado las estructuras de peque帽as escalas del campo escalar, en t茅rminos de las curvaturas media y de Gauss, k_m y k_g. Se ha analizado te贸ricamente la cinem谩tica de las superficies iso-escalares no materiales; se han obtenido expresiones para la velocidad de propagaci贸n de una superficie iso-escalar relativa al fluido, y tambi茅n para sus derivadas con respecto a la direcci贸n normal de las superficies iso-escalares. Para el caso de mezcla con densidad constante, la velocidad de desplazamiento viene determinada por las contribuciones de difusi贸n normal y tangencial; mientras que para el caso reactivo tanto de densidad variable como constante, la velocidad de propagaci贸n viene determinada por el proceso qu铆mico. Se obtienen tambi茅n las velocidades locales de deformaci贸n del flujo y se estudia su interacci贸n con las estructuras de peque帽as escalas del campo escalar. La variaci贸n temporal de la distancia infinitesimal entre dos iso-superficies depende del valor de la deformaci贸n normal 'efectiva', que suma las tasas de deformaci贸n inducidas por la reacci贸n-difusi贸n y las debidas al flujo. El valor y signo de la velocidad de deformaci贸n normal 'efectiva' determina si el modulo del gradiente del escalar o, equivalentemente, la tasa de disipaci贸n de las fluctuaciones del escalar, aumenta o disminuye con el tiempo. Para llamas premezcladas turbulentas, la generaci贸n de calor produce tasas de dilataci贸n volum茅trica del flujo positivas en todo el dominio computacional, lo cual implica generalmente velocidades positivas de deformaci贸n del flujo perpendiculares a las superficies iso-escalares. Se ha obtenido una expresi贸n para la tasa de dilataci贸n volum茅trica, con contribuciones aditivas de la difusi贸n molecular y la generaci贸n qu铆mica de la variable de progreso definida en t茅rminos de la temperatura, suponiendo un flamelet unidimensional; las diferencias entre esta expresi贸n y la dilataci贸n calculada son significativas, lo cual arroja dudas sobre la validez de las hip贸tesis usadas. Se ha descompuesto la tasa de dilataci贸n volum茅trica en sus componentes de deformaci贸n tangencial, a_T, y normal, a_N. Las pdfs conjuntas de a_N y a_T, en las regiones con alta actividad qu铆mica, muestran sus valores m谩s probables localizados por encima de la l铆nea a_N+a_T=0, independientemente de la configuraci贸n analizada. Se han examinado las estructuras de las peque帽as escalas del campo de velocidad, mediante los invariantes del tensor gradiente de velocidad. La forma universal de l谩grima de las pdfs conjuntas del segundo y tercer invariante del tensor gradiente de velocidad permanece para los casos de mezcla y reacci贸n de densidad constante, mientras que en las llamas premezcladas turbulentas desaparece. El promedio del autovalor m谩s extensivo (compresivo) del tensor velocidad de deformaci贸n, (), es siempre positivo (negativo), y el intermedio presenta promedio positivo. En los casos de llamas premezcladas turbulentas, los valores positivos de presentan alta probabilidad en regiones con actividad qu铆mica intensa. El estudio del alineamiento entre el vector unitario normal a las superficies iso-escalares, n, y los autovectores del tensor velocidad de deformaci贸n, e_i, o la vorticidad local, \omega, muestra que hay una correlaci贸n entre las orientaciones espaciales de las topolog铆as del flujo local y de las estructuras del escalar. Para llamas premezcladas turbulentas, el gradiente del escalar se alinea preferentemente con el eje principal del tensor velocidad de deformaci贸n correspondiente al mayor autovalor positivo, mientras que en los casos de fluidos de densidad constante tanto con mezcla como reacci贸n el gradiente del escalar resulta generalmente paralelo al eje principal correspondiente al autovalor negativo. El an谩lisis tambi茅n revel贸 que el vector vorticidad es predominantemente paralelo a las superficies iso-escalares, independientemente de la configuraci贸n analizada. Adem谩s, el an谩lisis de un v贸rtice 'can贸nico', muestra que su orientaci贸n es perpendicular al gradiente del escalar y por lo tanto, contribuye a curvar y doblar las superficies iso-escalares. Estudios sobre la enstrof铆a y la tasa de deformaci贸n, as铆 como tambi茅n sobre la producci贸n de enstrof铆a y disipaci贸n, demostraron que las topolog铆as focales son dominantes en los 'reactantes frescos' y tienden a desaparecer en favor de estructuras nodales al desplazarse hacia los 'productos calientes', en llamas premezcladas turbulentas.The aim of this work is to investigate several turbulent mixing and combustion processes, through the study of the small-scale structures of the scalar and velocity fields, using direct numerical simulation (DNS) techniques. Different datasets for statistically homogeneous and stationary constant-density turbulence, and for turbulent premixed flames in an inflow-outflow configuration and in a jet with a co-flow of hot products, have been examined. The constant-density mixing and reaction cases have been analyzed for different Schmidt numbers. For the two turbulent premixed flames, the computational domain has been divided into four regions ('fresh reactants', 'preheat', 'burning' and 'hot products'), characterized by the values of the chemical reaction rate or, equivalently, of the scalar field. Small-scale scalar structures have been identified in terms of the mean and Gauss curvatures, k_m and k_g. The kinematics of non-material iso-scalar surfaces has been theoretically analyzed; expressions for the propagation speed of an iso-scalar surface relative to the fluid and its derivative, with respect to the normal direction of the iso-surfaces, have been obtained. For constant-density mixing, the normal and tangential diffusion contributions to the displacement speed are essential; whereas for constant- and variable-density turbulent reacting flows, the propagation speed is controlled by the chemical process. Small-scale flow topologies interact with the local scalar structures. The time rate of change of the infinitesimal distance between two iso-surfaces is controlled by the value of the 'effective' normal strain rate, which combines flow and diffusion-reaction induced effects. The value and sign of the 'effective' normal strain rate determines whether the modulus of scalar gradients or, equivalently, the scalar fluctuation dissipation rate, increases or decreases with time. For turbulent premixed flames, chemical heat generation yields positive flow volumetric dilatation rates everywhere in the computational domain, which implies mostly positive flow strain rates normal to iso-scalar surfaces. An expression for the volumetric dilatation rate, with additive contributions from molecular diffusion and chemical generation of the reaction progress variable defined from the temperature, has been obtained, assuming a one-dimensional flamelet; the differences between this expression and the computed dilatation rate are significantly high, which casts doubts on the validity of this approximation. The dilatation rate has also been decomposed into the tangential, a_T, and normal, a_N, strain rates. The joint pdf's of a_N and a_T, in the regions with high chemical activity, show that their most probable values are located above the line a_N + a_T = 0, regardless of the configuration under study. Small-scale structures of the velocity field, in terms of the invariants of the velocity-gradient tensor, have been examined. The universal teardrop shape of the joint pdf's of the second Q and third R invariants of the velocity-gradient tensor is apparent for the constant-density mixing and reaction cases, whereas it disappears in the turbulent premixed flames. The mean of the most extensive (compressive) eigenvalue of the strain rate tensor, (), is always positive (negative), and the intermediate remains on average positive. In the cases of turbulent premixed flames, has a high probability of being positive within the regions with significant chemical activity. The study of the alignment between the unit vector normal to the iso-scalar surfaces, n, with respect to the strain rate eigenvectors, e_i, and the local vorticity, \omega, demonstrates that there is a specific orientation between the local flow topologies and the scalar structures. For turbulent premixed flames, the scalar gradient aligns preferentially with the strain rate tensor eigenvector corresponding to its most extensive eigenvalue, whereas in constant-density mixing and reaction the scalar gradient is mainly parallel to the most compressive eigenvector. The analysis also revealed that the vorticity vector is predominantly tangential to the iso-scalar surfaces, regardless of the configuration under study. Furthermore, the results showed that a 'canonical' vortex, found perpendicular to the scalar gradient, contributes to curving and folding the iso-scalar surfaces. Studies on local enstrophy and strain rate, as well as on the production of enstrophy and dissipation, demonstrated that focal topologies are dominant in the 'fresh reactants' and tend to disappear in favor of nodal structures as moving towards the 'hot products', in turbulent premixed flames

    Clinical value of next generation sequencing of plasma cell-free DNA in gastrointestinal stromal tumors

    Get PDF
    [Background] Gastrointestinal stromal tumor (GIST) initiation and evolution is commonly framed by KIT/PDGFRA oncogenic activation, and in later stages by the polyclonal expansion of resistant subpopulations harboring KIT secondary mutations after the onset of imatinib resistance. Thus, circulating tumor (ct)DNA determination is expected to be an informative non-invasive dynamic biomarker in GIST patients.[Methods] We performed amplicon-based next-generation sequencing (NGS) across 60 clinically relevant genes in 37 plasma samples from 18 GIST patients collected prospectively. ctDNA alterations were compared with NGS of matched tumor tissue samples (obtained either simultaneously or at the time of diagnosis) and cross-validated with droplet digital PCR (ddPCR).[Results] We were able to identify cfDNA mutations in five out of 18 patients had detectable in at least one timepoint. Overall, NGS sensitivity for detection of cell-free (cf)DNA mutations in plasma was 28.6%, showing high concordance with ddPCR confirmation. We found that GIST had relatively low ctDNA shedding, and mutations were at low allele frequencies. ctDNA was detected only in GIST patients with advanced disease after imatinib failure, predicting tumor dynamics in serial monitoring. KIT secondary mutations were the only mechanism of resistance found across 10 imatinib-resistant GIST patients progressing to sunitinib or regorafenib.[Conclusions] ctDNA evaluation with amplicon-based NGS detects KIT primary and secondary mutations in metastatic GIST patients, particularly after imatinib progression. GIST exhibits low ctDNA shedding, but ctDNA monitoring, when positive, reflects tumor dynamics.This research is supported by a Fero Fellowship Award (C.S.), Asociaci贸n Espa帽ola Contra el C谩ncer (J.P. Barcelona) (C.S.), and ISCIII PI16/01371 (C.S.). C.S. and A.V. acknowledge to the Cellex Foundation for providing facilities and equipment
    corecore