552 research outputs found

    PEMETAAN SINYAL SELULER DI KAMPUS UNIVERSITAS NUSA CENDANA DENGAN METODE DRIVE TEST DAN WALK TEST

    Get PDF
    Penelitian ini difokuskan untuk pemetaan kondisi jaringan dari 3 buah provider pada kampus Undana. Parameter yang dipakai adalah kondisi sinyal RSRP dan RSRQ. Pengukuran dilakukan dengan metode Drive Test yang diperhalus dengan Walk Test menggunakan aplikasi G-Net Track Lite. Hasilnya menunjukan bahwa untuk provider Telkomsel, nilai range terbaik berada pada dengan nilai RSRP −73,50 dBm dan RSRQ −4,75 dB, sedangkan nilai terburuk dengan nilai RSRP −112,75 dBm dan RSRQ −18,66 dB. Nilai terbaik untuk provider Indosat Ooredoo adalahi RSRP −84,58 dBm dan RSRQ −9,79 dB, sedangkan nilai terburuknya pada nilai RSRP −115,32 dBm dan RSRQ −14,63 dB. Sedangkan provider XL Axiata menunjukan nilai terbaik RSRP sebesar −81,26 dBm dan RSRQ −10,21 dB, dan nilai terburuk RSRP sebesar −114,05 dBm dan RSRQ −17,68 dB. Secara keseluruhan, kondisi jaringan sudah cukup baik dan merata dari ketiga operator kecual di beberapa lokasi masih dalam keadaan kurang baik. Telkomsel menjadi operator yang mempunyai kondisi sinyal RSRP dan RSRQ yang lebih baik dibandingkan Indosat dan XL Axiata.&nbsp

    Rationale, challenges, and participants in a Phase II trial of a botanical product for chronic hepatitis C

    Get PDF
    Background Chronic hepatitis C is associated with significant morbidity and mortality as a consequence of progression to cirrhosis, hepatocellular carcinoma, and liver failure. Current treatment for chronic hepatitis C with pegylated interferon (IFN) and ribavirin is associated with suboptimal responses and numerous adverse effects. A number of botanical products have been used to treat hepatic disorders. Silymarin, extracted from the milk thistle plant, Silybum marianum (L) Gaertn. (Asteraceae), has been most widely used for various liver disorders, including chronic hepatitis C, B, and alcoholic liver disease. However, the safety and efficacy of silymarin have not been studied systematically in chronic hepatitis C

    The challenges of detecting and attributing ocean acidification impacts on marine ecosystems

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Doo, S. S., Kealoha, A., Andersson, A., Cohen, A. L., Hicks, T. L., Johnson, Z., I., Long, M. H., McElhany, P., Mollica, N., Shamberger, K. E. F., Silbiger, N. J., Takeshita, Y., & Busch, D. S. The challenges of detecting and attributing ocean acidification impacts on marine ecosystems. ICES Journal of Marine Science, 77(7-8), (2020): 2411-2422, https://doi.org/10.1093/icesjms/fsaa094.A substantial body of research now exists demonstrating sensitivities of marine organisms to ocean acidification (OA) in laboratory settings. However, corresponding in situ observations of marine species or ecosystem changes that can be unequivocally attributed to anthropogenic OA are limited. Challenges remain in detecting and attributing OA effects in nature, in part because multiple environmental changes are co-occurring with OA, all of which have the potential to influence marine ecosystem responses. Furthermore, the change in ocean pH since the industrial revolution is small relative to the natural variability within many systems, making it difficult to detect, and in some cases, has yet to cross physiological thresholds. The small number of studies that clearly document OA impacts in nature cannot be interpreted as a lack of larger-scale attributable impacts at the present time or in the future but highlights the need for innovative research approaches and analyses. We summarize the general findings in four relatively well-studied marine groups (seagrasses, pteropods, oysters, and coral reefs) and integrate overarching themes to highlight the challenges involved in detecting and attributing the effects of OA in natural environments. We then discuss four potential strategies to better evaluate and attribute OA impacts on species and ecosystems. First, we highlight the need for work quantifying the anthropogenic input of CO2 in coastal and open-ocean waters to understand how this increase in CO2 interacts with other physical and chemical factors to drive organismal conditions. Second, understanding OA-induced changes in population-level demography, potentially increased sensitivities in certain life stages, and how these effects scale to ecosystem-level processes (e.g. community metabolism) will improve our ability to attribute impacts to OA among co-varying parameters. Third, there is a great need to understand the potential modulation of OA impacts through the interplay of ecology and evolution (eco–evo dynamics). Lastly, further research efforts designed to detect, quantify, and project the effects of OA on marine organisms and ecosystems utilizing a comparative approach with long-term data sets will also provide critical information for informing the management of marine ecosystems.SSD was funded by NSF OCE (grant # 1415268). DSB and PM were supported by the NOAA Ocean Acidification Program and Northwest Fisheries Science Center, MHL was supported by NSF OCE (grant # 1633951), ZIJ was supported by NSF OCE (grant # 1416665) and DOE EERE (grant #DE-EE008518), NJS was supported by NSF OCE (grant # 1924281), ALC was supported by NSF OCE (grant # 1737311), and AA was supported by NSF OCE (grant # 1416518). KEFS, AK, and TLH were supported by Texas A&M University. This is CSUN Marine Biology contribution (# 306)

    Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density

    Get PDF
    Silicon is receiving discernable attention as an active material for next generation lithium-ion battery anodes because of its unparalleled gravimetric capacity. However, the large volume change of silicon over charge-discharge cycles weakens its competitiveness in the volumetric energy density and cycle life. Here we report direct graphene growth over silicon nanoparticles without silicon carbide formation. The graphene layers anchored onto the silicon surface accommodate the volume expansion of silicon via a sliding process between adjacent graphene layers. When paired with a commercial lithium cobalt oxide cathode, the silicon carbide-free graphene coating allows the full cell to reach volumetric energy densities of 972 and 700Whl -1 at first and 200th cycle, respectively, 1.8 and 1.5 times higher than those of current commercial lithium-ion batteries. This observation suggests that two-dimensional layered structure of graphene and its silicon carbide-free integration with silicon can serve as a prototype in advancing silicon anodes to commercially viable technology. © 2015 Macmillan Publishers Limited11681721sciescopu

    Observation of Mott Transition in VO_2 Based Transistors

    Full text link
    An abrupt Mott metal-insulator transition (MIT) rather than the continuous Hubbard MIT near a critical on-site Coulomb energy U/U_c=1 is observed for the first time in VO_2, a strongly correlated material, by inducing holes of about 0.018% into the conduction band. As a result, a discontinuous jump of the density of states on the Fermi surface is observed and inhomogeneity inevitably occurs. The gate effect in fabricated transistors is clear evidence that the abrupt MIT is induced by the excitation of holes.Comment: 4 pages, 4 figure

    Differences in the Disposition of Silymarin between Patients with Nonalcoholic Fatty Liver Disease and Chronic Hepatitis C

    Get PDF
    Silymarin, derived from the milk thistle plant Silybum marianum and widely used for self-treatment of liver diseases, is composed of six major flavonolignans including silybin A and silybin B, which are the predominant flavonolignans quantified in human plasma. The single- and multiple-dose pharmacokinetics of silymarin flavonolignans were examined in patients with nonalcoholic fatty liver disease (NAFLD) or hepatitis C virus (HCV) to determine whether the disposition of silymarin and therefore its potential efficacy vary among liver disease populations. Cohorts of eight subjects with noncirrhotic liver disease were randomized 3:1 to oral silymarin or placebo (280 or 560 mg) every 8 h for 7 days. Forty-eight-hour blood sampling was conducted after the first and final doses. In general, plasma concentrations of silybin A and silybin B were higher, whereas concentrations of conjugates were lower in NAFLD compared with HCV. After adjustment of the area under plasma concentration-time curve from 0 to 8 h (AUC0–8 h) for weight and dose, only silybin B and silybin B conjugates differed significantly between disease types. For NAFLD, the adjusted mean AUC0–8 h was higher for silybin B (p < 0.05) but lower for silybin B conjugates (p < 0.05) compared with that for HCV. At the 280-mg dose, steady-state plasma concentrations of silybin B conjugates for NAFLD subjects were characterized by 46% lower AUC0–8 h (p < 0.05) and 42% lower Cmax (p < 0.05) compared with HCV subjects. Evidence of enterohepatic cycling of flavonolignans was only observed in NAFLD subjects. In summary, the efficacy of silymarin may be more readily observed in NAFLD patients because of their higher flavonolignan plasma concentrations and more extensive enterohepatic cycling compared with those in HCV patients

    Wnt5a stimulates chemotactic migration and chemokine production in human neutrophils

    Get PDF
    Wnt5a is a ligand that activates the noncanonical Wnt signaling pathways (??-catenin-independent pathways). Human neutrophils expressed several Wnt5a receptors, such as Frizzled 2, 5 and 8. Stimulation of human neutrophils with Wnt5a caused chemotactic migration and the production of two important chemokines, CXCL8 and CCL2. CCL2 production by Wnt5a was mediated by a pertussis toxin-sensitive G-protein-dependent pathway. Wnt5a also stimulated the phosphorylation of three mitogen-activated protein kinases (MAPKs: ERK, p38 MAPK and JNK) and Akt. Inhibition of ERK, p38 MAPK or JNK by specific inhibitors induced a dramatic reduction in Wnt5a-induced CCL2 production. Supernatant collected from lipopolysaccharide-stimulated macrophages induced neutrophil chemotaxis, which was significantly inhibited by anti-Wnt5a antibody. Our results suggested that Wnt5a may contribute to neutrophil recruitment, mediating the inflammation response.open4

    Inhibition of Akt activity induces the mesenchymal-to-epithelial reverting transition with restoring E-cadherin expression in KB and KOSCC-25B oral squamous cell carcinoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Akt/PKB family of kinases is frequently activated in human cancers, including oral squamous cell carcinoma (OSCC). Akt-induced epithelial-to-mesenchymal transition (EMT) involves downregulation of E-cadherin, which appears to result from upregulation of the transcription repressor Snail. Recently, it was proposed that carcinoma cells, especially in metastatic sites, could acquire the mesenchymal-to-epithelial reverting transition (MErT) in order to adapt the microenvironments and re-expression of E-cadherin be a critical indicator of MErT. However, the precise mechanism and biologic or clinical importance of the MErT in cancers have been little known. This study aimed to investigate whether Akt inhibition would restore the expression of E-cadherin and β-catenin, reduce that of Vimentin, and induce the MErT in OSCC cells with low or negative expression of E-cadherin. We also investigate whether inhibition of Akt activity would affect the E-cadherin repressors and signaling molecules like NF-κB, ERK, and p38.</p> <p>Methods</p> <p>We screened several OSCC cell lines in order to select suitable cell line models for inducing MErT, using immunoblotting and methylation specific-PCR. We examined whether Akt inhibitor phosphatidylinositol ether lipid analogues (PIA) treatment would restore the expression of E-cadherin and β-catenin, reduce that of Vimentin, and induce the MErT in KB and KOSCC-25B cells using RT-PCR, immunoblotting, immunofluorescence analysis, and <it>in vitro </it>migration assay. We also investigated whether inhibition of Akt activity would affect the E-cadherin repressors, including Snail, Twist, and SIP-1/ZEB-2 and signaling molecules like NF-κB, ERK, JNK, and p38 using RT-PCR, immunoblotting, and immunofluorescence analysis.</p> <p>Results</p> <p>Of the 7 OSCC cell lines, KB and KOSCC-25B showed constitutively activated phosphorylated Akt and low or negative expression of E-cadherin. Inhibition of Akt activity by PIA decreased NF-κB signaling, but did not affect phosphorylation of ERK, JNK, and p38 in KB and KOSCC-25B cells. Akt inhibition led to downregulation of Snail and Twist expression. In contrast, inhibition of Akt activity by PIA did not induce any changes in SIP-1/ZEB-2 expression. PIA treatment induced the expression of E-cadherin and β-catenin, reduce that of Vimentin, restored their epithelial morphology of a polygonal shape, and reduced tumor cell migration in KB and KOSCC-25B cells, which was the corresponding feature of MErT.</p> <p>Conclusion</p> <p>All of these findings suggest that Akt inhibition could induce the MErT through decreased NF-κB signaling and downregulation of Snail and Twist in OSCC cells. A strategy involving Akt inhibition might be a useful therapeutic tool in controlling cancer dissemination and metastasis in oral cancer patients.</p
    corecore