269 research outputs found

    Role of erythroid Kruppel-like factor in human Ξ³- to Ξ²-globin gene switching

    Get PDF
    Erythroid Kruppel-like factor (EKLF) is an erythroid-specific transcription factor that contains zinc finger domains similar to the Kruppel protein of Drosophila melanogaster. Previous studies demonstrated that EKLF binds to the CACCC box in the human Ξ²-globin gene promoter and activates transcription. CACCC box mutations that cause severe Ξ²-thalassemias in humans inhibit EKLF binding. Results described in this paper suggest that EKLF functions predominately in adult erythroid tissue. The EKLF gene is expressed at a 3-fold higher level in adult erythroid tissue than in fetal erythroid tissue, and the EKLF protein binds to the human Ξ²-globin promoter 8-fold more efficiently than to the human Ξ³-globin promoter. Co-transfection experiments in the human fetal-like erythroleukemia cell line K562 demonstrate that over-expression of EKLF activates a Ξ²-globin reporter construct 1000-fold; a linked Ξ³-globin reporter is activated only 3-fold. Mutation of the Ξ²-globin CACCC box severely inhibits activation. These results demonstrate that EKLF is a developmental stage-enriched protein that preferentially activates human Ξ²-globin gene expression. The data strongly suggest that EKLF is an important factor involved in human Ξ³- to Ξ²-globin gene switching

    Epigenetic Chromatin Silencing: Bistability and Front Propagation

    Full text link
    The role of post-translational modification of histones in eukaryotic gene regulation is well recognized. Epigenetic silencing of genes via heritable chromatin modifications plays a major role in cell fate specification in higher organisms. We formulate a coarse-grained model of chromatin silencing in yeast and study the conditions under which the system becomes bistable, allowing for different epigenetic states. We also study the dynamics of the boundary between the two locally stable states of chromatin: silenced and unsilenced. The model could be of use in guiding the discussion on chromatin silencing in general. In the context of silencing in budding yeast, it helps us understand the phenotype of various mutants, some of which may be non-trivial to see without the help of a mathematical model. One such example is a mutation that reduces the rate of background acetylation of particular histone side-chains that competes with the deacetylation by Sir2p. The resulting negative feedback due to a Sir protein depletion effect gives rise to interesting counter-intuitive consequences. Our mathematical analysis brings forth the different dynamical behaviors possible within the same molecular model and guides the formulation of more refined hypotheses that could be addressed experimentally.Comment: 19 pages, 5 figure

    Comparison of 6 Mortality Risk Scores for Prediction of 1-Year Mortality Risk in Older Adults with Multimorbidity

    Get PDF
    Importance: The most appropriate therapy for older adults with multimorbidity may depend on life expectancy (ie, mortality risk), and several scores have been developed to predict 1-year mortality risk. However, often, these mortality risk scores have not been externally validated in large sample sizes, and a head-to-head comparison in a prospective contemporary cohort is lacking. Objective: To prospectively compare the performance of 6 scores in predicting the 1-year mortality risk in hospitalized older adults with multimorbidity. Design, Setting, and Participants: This prognostic study analyzed data of participants in the OPERAM (Optimising Therapy to Prevent Avoidable Hospital Admissions in Multimorbid Older People) trial, which was conducted between December 1, 2016, and October 31, 2018, in surgical and nonsurgical departments of 4 university-based hospitals in Louvain, Belgium; Utrecht, the Netherlands; Cork, Republic of Ireland; and Bern, Switzerland. Eligible participants in the OPERAM trial had multimorbidity (β‰₯3 coexisting chronic diseases), were aged 70 years or older, had polypharmacy (β‰₯5 long-term medications), and were admitted to a participating ward. Data were analyzed from April 1 to September 30, 2020. Main Outcomes and Measures: The outcome of interest was any-cause death occurring in the first year of inclusion in the OPERAM trial. Overall performance, discrimination, and calibration of the following 6 scores were assessed: Burden of Illness Score for Elderly Persons, CARING (Cancer, Admissions β‰₯2, Residence in a nursing home, Intensive care unit admit with multiorgan failure, β‰₯2 Noncancer hospice guidelines) Criteria, Charlson Comorbidity Index, GagnΓ© Index, Levine Index, and Walter Index. These scores were assessed using the following measures: Brier score (0 indicates perfect overall performance and 0.25 indicates a noninformative model); C-statistic and 95% CI; Hosmer-Lemeshow goodness-of-fit test and calibration plots; and sensitivity, specificity, and positive and negative predictive values. Results: The 1879 patients in the study had a median (IQR) age of 79 (74-84) years and 835 were women (44.4%). The median (IQR) number of chronic diseases was 11 (8-16). Within 1 year, 375 participants (20.0%) died. Brier scores ranged from 0.16 (GagnΓ© Index) to 0.24 (Burden of Illness Score for Elderly Persons). C-statistic values ranged from 0.62 (95% CI, 0.59-0.65) for Charlson Comorbidity Index to 0.69 (95% CI, 0.66-0.72) for the Walter Index. Calibration was good for the GagnΓ© Index and moderate for other mortality risk scores. Conclusions and Relevance: Results of this prognostic study suggest that all 6 of the 1-year mortality risk scores examined had moderate prognostic performance, discriminatory power, and calibration in a large cohort of hospitalized older adults with multimorbidity. Overall, none of these mortality risk scores outperformed the others, and thus none could be recommended for use in daily clinical practice.

    Transcriptional analysis of defense mechanisms in upland tetraploid switchgrass to greenbugs

    Get PDF
    Background: Aphid infestation of switchgrass (Panicum virgatum) has the potential to reduce yields and biomass quality. Although switchgrass-greenbug (Schizaphis graminum; GB) interactions have been studied at the whole plant level, little information is available on plant defense responses at the molecular level. Results: The global transcriptomic response of switchgrass cv Summer to GB was monitored by RNA-Seq in infested and control (uninfested) plants harvested at 5, 10, and 15 days after infestation (DAI). Differentially expressed genes (DEGs) in infested plants were analyzed relative to control uninfested plants at each time point. DEGs in GB-infested plants induced by 5-DAI included an upregulation of reactive burst oxidases and several cell wall receptors. Expression changes in genes linked to redox metabolism, cell wall structure, and hormone biosynthesis were also observed by 5- DAI. At 10-DAI, network analysis indicated a massive upregulation of defense-associated genes, including NAC, WRKY, and MYB classes of transcription factors and potential ancillary signaling molecules such as leucine aminopeptidases. Molecular evidence for loss of chloroplastic functions was also detected at this time point. Supporting these molecular changes, chlorophyll content was significantly decreased, and ROS levels were elevated in infested plants 10-DAI. Total peroxidase and laccase activities were elevated in infested plants at 10-DAI relative to control uninfested plants. The net result appeared to be a broad scale defensive response that led to an apparent reduction in C and N assimilation and a potential redirection of nutrients away from GB and towards the production of defensive compounds, such as pipecolic acid, chlorogenic acid, and trehalose by 10-DAI. By 15-DAI, evidence of recovery in primary metabolism was noted based on transcript abundances for genes associated with carbon, nitrogen, and nutrient assimilation. Conclusions: Extensive remodeling of the plant transcriptome and the production of ROS and several defensive metabolites in an upland switchgrass cultivar were observed in response to GB feeding. The early loss and apparent recovery in primary metabolism by 15-DAI would suggest that these transcriptional changes in later stages of GB infestation could underlie the recovery response categorized for this switchgrass cultivar. These results can be exploited to develop switchgrass lines with more durable resistance to GB and potentially other aphids

    Novel bleeding risk score for patients with atrial fibrillation on oral anticoagulants, including direct oral anticoagulants

    Get PDF
    Objective: Balancing bleeding risk and stroke risk in patients with atrial fibrillation (AF) is a common challenge. Though several bleeding risk scores exist, most have not included patients on direct oral anticoagulants (DOACs). We aimed at developing a novel bleeding risk score for patients with AF on oral anticoagulants (OAC) including both vitamin K antagonists (VKA) and DOACs. Methods: We included patients with AF on OACs from a prospective multicenter cohort study in Switzerland (SWISS-AF). The outcome was time to first bleeding. Bleeding events were defined as major or clinically relevant non-major bleeding. We used backward elimination to identify bleeding risk variables. We derived the score using a point score system based on the Ξ²-coefficients from the multivariable model. We used the Brier score for model calibration (<0.25 indicating good calibration), and Harrel's c-statistics for model discrimination. Results: We included 2147 patients with AF on OAC (72.5% male, mean age 73.4 Β± 8.2 years), of whom 1209 (56.3%) took DOACs. After a follow-up of 4.4 years, a total of 255 (11.9%) bleeding events occurred. After backward elimination, age > 75 years, history of cancer, prior major hemorrhage, and arterial hypertension remained in the final prediction model. The Brier score was 0.23 (95% confidence interval [CI] 0.19–0.27), the c-statistic at 12 months was 0.71 (95% CI 0.63–0.80). Conclusion: In this prospective cohort study of AF patients and predominantly DOAC users, we successfully derived a bleeding risk prediction model with good calibration and discrimination

    A Single Heterochromatin Boundary Element Imposes Position-Independent Antisilencing Activity in Saccharomyces cerevisiae Minichromosomes

    Get PDF
    Chromatin boundary elements serve as cis-acting regulatory DNA signals required to protect genes from the effects of the neighboring heterochromatin. In the yeast genome, boundary elements act by establishing barriers for heterochromatin spreading and are sufficient to protect a reporter gene from transcriptional silencing when inserted between the silencer and the reporter gene. Here we dissected functional topography of silencers and boundary elements within circular minichromosomes in Saccharomyces cerevisiae. We found that both HML-E and HML-I silencers can efficiently repress the URA3 reporter on a multi-copy yeast minichromosome and we further showed that two distinct heterochromatin boundary elements STAR and TEF2-UASrpg are able to limit the heterochromatin spreading in circular minichromosomes. In surprising contrast to what had been observed in the yeast genome, we found that in minichromosomes the heterochromatin boundary elements inhibit silencing of the reporter gene even when just one boundary element is positioned at the distal end of the URA3 reporter or upstream of the silencer elements. Thus the STAR and TEF2-UASrpg boundary elements inhibit chromatin silencing through an antisilencing activity independently of their position or orientation in S. cerevisiae minichromosomes rather than by creating a position-specific barrier as seen in the genome. We propose that the circular DNA topology facilitates interactions between the boundary and silencing elements in the minichromosomes

    An RNA Polymerase III-Dependent Heterochromatin Barrier at Fission Yeast Centromere 1

    Get PDF
    Heterochromatin formation involves the nucleation and spreading of structural and epigenetic features along the chromatin fiber. Chromatin barriers and associated proteins counteract the spreading of heterochromatin, thereby restricting it to specific regions of the genome. We have performed gene expression studies and chromatin immunoprecipitation on strains in which native centromere sequences have been mutated to study the mechanism by which a tRNAAlanine gene barrier (cen1 tDNAAla) blocks the spread of pericentromeric heterochromatin at the centromere of chromosome 1 (cen1) in the fission yeast, Schizosaccharomyces pombe. Within the centromere, barrier activity is a general property of tDNAs and, unlike previously characterized barriers, requires the association of both transcription factor IIIC and RNA Polymerase III. Although the cen1 tDNAAla gene is actively transcribed, barrier activity is independent of transcriptional orientation. These findings provide experimental evidence for the involvement of a fully assembled RNA polymerase III transcription complex in defining independent structural and functional domains at a eukaryotic centromere

    The Impact of Local Genome Sequence on Defining Heterochromatin Domains

    Get PDF
    Characterizing how genomic sequence interacts with trans-acting regulatory factors to implement a program of gene expression in eukaryotic organisms is critical to understanding genome function. One means by which patterns of gene expression are achieved is through the differential packaging of DNA into distinct types of chromatin. While chromatin state exerts a major influence on gene expression, the extent to which cis-acting DNA sequences contribute to the specification of chromatin state remains incompletely understood. To address this, we have used a fission yeast sequence element (L5), known to be sufficient to nucleate heterochromatin, to establish de novo heterochromatin domains in the Schizosaccharomyces pombe genome. The resulting heterochromatin domains were queried for the presence of H3K9 di-methylation and Swi6p, both hallmarks of heterochromatin, and for levels of gene expression. We describe a major effect of genomic sequences in determining the size and extent of such de novo heterochromatin domains. Heterochromatin spreading is antagonized by the presence of genes, in a manner that can occur independent of strength of transcription. Increasing the dosage of Swi6p results in increased heterochromatin proximal to the L5 element, but does not result in an expansion of the heterochromatin domain, suggesting that in this context genomic effects are dominant over trans effects. Finally, we show that the ratio of Swi6p to H3K9 di-methylation is sequence-dependent and correlates with the extent of gene repression. Taken together, these data demonstrate that the sequence content of a genomic region plays a significant role in shaping its response to encroaching heterochromatin and suggest a role of DNA sequence in specifying chromatin state
    • …
    corecore