2 research outputs found

    Size effect in the ionization energy of PAH clusters

    Full text link
    We report the first experimental measurement of the near-threshold photo-ionization spectra of polycyclic aromatic hydrocarbon clusters made of pyrene C16H10 and coronene C24H12, obtained using imaging photoelectron photoion coincidence spectrometry with a VUV synchrotron beamline. The experimental results of the ionization energy are confronted to calculated ones obtained from simulations using dedicated electronic structure treatment for large ionized molecular clusters. Experiment and theory consistently find a decrease of the ionization energy with cluster size. The inclusion of temperature effects in the simulations leads to a lowering of this energy and to a quantitative agreement with the experiment. In the case of pyrene, both theory and experiment show a discontinuity in the IE trend for the hexamer

    Investigating Electronic Properties of Ionized PAH Clusters

    No full text
    International audiencePolycyclic aromatic hydrocarbon (PAH) clusters have been proposed as candidates for evaporating very small grains that are revealed by their mid-IR emission at the surface of UV-irradiated clouds in interstellar space. This motivates studies on the photostability and spectroscopic signatures of such species to validate their presence in interstellar environments and constrain their survival therein. We have used the molecular beam chamber SAPHIRS and the photoelectron-photoion coincidence spectrometer DELICIOUS II at the SOLEIL synchrotron facility to characterize the electronic properties of cationic coronene (C24H12) clusters up to the pentamer. These experimental results are analysed in the light of electronic structure calculations. In particular a Density Functional Tight Binding + Configuration Interaction scheme is developed to describe charge delocalization in these large systems and calculate the ionization potential, vibrational spectra, and charge transfer excited states. For the coronene dimer cation, complementary measurements are performed with the PIRENEA set-up to quantify some of the electronic transitions, in particular their oscillator strengths that cannot be extracted from the photoelectron spectroscopy. Emphasis will be put on the evolution of the spectra with cluster size. M. Rapacioli, C. Joblin and P. Boissel Astron. & Astrophys. 429, 193-204 (2005) G. Garcia, H. Soldi-Lose and L. Nahon Rev. Sci. Instrum. 80, 023102 (2009) Joint ANR project GASPARIM, ANR-10-BLAN-501 M. Rapacioli, A. Simon, L. Dontot and F. Spiegelman Phys. Status Solidi B 249 (2) 245-258 (2012
    corecore