7 research outputs found

    Polysulfates block SARS‐CoV‐2 uptake through electrostatic interactions

    Get PDF
    Here we report that negatively charged polysulfates can bind to the spike protein of SARS-CoV-2 via electrostatic interactions. Using a plaque reduction assay, we compare inhibition of SARS-CoV-2 by heparin, pentosan sulfate, linear polyglycerol sulfate (LPGS) and hyperbranched polyglycerol sulfate (HPGS). Highly sulfated LPGS is the optimal inhibitor, with a half-maximal inhibitory concentration (IC50) of 67 ÎŒg/mL (approx. 1.6 ÎŒM). This synthetic polysulfates exhibit more than 60-fold higher virus inhibitory activity than heparin (IC50: 4084 ÎŒg/mL), along with much lower anticoagulant activity. Furthermore, in molecular dynamics simulations, we verified that LPGS can bind stronger to the spike protein than heparin, and that LPGS can interact even more with the spike protein of the new N501Y and E484K variants. Our study demonstrates that the entry of SARS-CoV-2 into host cells can be blocked via electrostatic interaction, therefore LPGS can serve as a blueprint for the design of novel viral inhibitors of SARS-CoV-2

    Scalable Production of Nanographene and Doping via Nondestructive Covalent Functionalization

    No full text
    A new method for top‐down, one‐pot, gram‐scale production of high quality nanographene by incubating graphite in a dilute sodium hypochlorite solution at only 40 °C is reported here. The produced sheets have only 4 at% oxygen content, comparable with nanographene grown by chemical vapor deposition. The nanographene sheets are covalently functionalized using a nondestructive nitrene [2+1] cycloaddition reaction that preserves their π‐conjugated system. Statistical analyses of Raman spectroscopy and X‐ray photoelectron spectroscopy indicate a low number of sp3 carbon atoms on the order of 2% before and 4% after covalent functionalization. The nanographene sheets are significantly more conductive than conventionally prepared nanographene oxide, and conductivity further increases after covalent functionalization. The observed doping effects and theoretical studies suggest sp2 hybridization for the carbon atoms involved in the [2+1] cycloaddition reaction leading to preservation of the π‐conjugated system and enhancing conductivity via n‐type doping through the bridging N‐atom. These methods are easily scalable, which opens the door to a mild and efficient process to produce high quality nanographenes and covalently functionalize them while retaining or improving their physicochemical properties

    BIOLOGICAL PURIFICATION AND DEODORIZATION OF GAS-AIR EMISSIONS

    Full text link
    The textbook addresses the contemporary problems of environmental pollution by gaseous emissions of industrial origin. Existing methods of purification and deodorization of emissions using the processes of biological degradation of organic and inorganic pollutants in modern gas purifiers are analyzed: biofilters and bio-scrubbers. Recommendations on the selection and calculation of gas purification equipment using biological methods are given. It is designed for graduate students and students of higher educational establishments, teachers and research associates, as well as specialists involved in environmental protection

    Titanium coating with mussel inspired polymer and bio-orthogonal chemistry enhances antimicrobial activity against Staphylococcus aureus

    No full text
    Implant-associated infections present severe and difficult-to-treat complications after surgery, related to implant biofilm colonization. Systemic administration of antibiotics cannot reach sufficient concentrations at the infected site and may be toxic. Here we describe how mussel-inspired dendritic material coated on a titanium surface can locally activate a prodrug of daptomycin (pro-dapto) to treat methicillin-resistant Staphylococcus aureus. The mechanism of the prodrug activation is based on bio-orthogonal click chemistry between a tetrazine (Tz) and trans-cyclooctene (TCO). The former is attached to the dendritic polymer, while the later converts daptomycin into a prodrug. Characterization of the material's properties revealed that it is hydrophobic, non-toxic, and stable for a prolonged period of time. We envision that the titanium coated dendritic material will be able to improve the treatment of implant-associated infections by concentrating systemically administered antibiotic prodrugs, thus converting them into active localized medicines
    corecore