17 research outputs found

    Synthesis, self-assembly, and photocrosslinking of fullerene-polyglycerol amphiphiles as nanocarriers with controlled transport properties

    Get PDF
    In this work, we report a new, simple, gram-scale method for synthesizing water-soluble fullerene-polyglycerol amphiphiles (FPAs) that self-assemble into partially and fully crosslinked nanoclusters with the ability to controllably transport hydrophobic and hydrophilic agents

    A New Support Film for Cryo Electron Microscopy Protein Structure Analysis Based on Covalently Functionalized Graphene

    Get PDF
    Protein adsorption at the air–water interface is a serious problem in cryogenic electron microscopy (cryoEM) as it restricts particle orientations in the vitrified ice-film and promotes protein denaturation. To address this issue, the preparation of a graphene-based modified support film for coverage of conventional holey carbon transmission electron microscopy (TEM) grids is presented. The chemical modification of graphene sheets enables the universal covalent anchoring of unmodified proteins via inherent surface-exposed lysine or cysteine residues in a one-step reaction. Langmuir–Blodgett (LB) trough approach is applied for deposition of functionalized graphene sheets onto commercially available holey carbon TEM grids. The application of the modified TEM grids in single particle analysis (SPA) shows high protein binding to the surface of the graphene-based support film. Suitability for high resolution structure determination is confirmed by SPA of apoferritin. Prevention of protein denaturation at the air–water interface and improvement of particle orientations is shown using human 20S proteasome, demonstrating the potential of the support film for structural biology

    Biological Effects of Black Phosphorus Nanomaterials on Mammalian Cells and Animals

    Get PDF
    The remarkable progress of applied black phosphorus nanomaterials (BPNMs) is attributed to BP's outstanding properties. Due to its potential for applications, environmental release and subsequent human exposure are virtually inevitable. Therefore, how BPNMs impact biological systems and human health needs to be considered. In this comprehensive Minireview, the most recent advancements in understanding the mechanisms and regulation factors of BPNMs’ endogenous toxicity to mammalian systems are presented. These achievements lay the groundwork for an understanding of its biological effects, aimed towards establishing regulatory principles to minimize the adverse health impacts

    A Metal-Ion-Incorporated Mussel-Inspired Poly(Vinyl Alcohol)-Based Polymer Coating Offers Improved Antibacterial Activity and Cellular Mechanoresponse Manipulation

    Get PDF
    Cobalt (CoII) ions have been an attractive candidate for the biomedical modification of orthopedic implants for decades. However, limited research has been performed into how immobilized CoII ions affect the physical properties of implant devices and how these changes regulate cellular behavior. In this study we modified biocompatible poly(vinyl alcohol) with terpyridine and catechol groups (PVA-TP-CA) to create a stable surface coating in which bioactive metal ions could be anchored, endowing the coating with improved broad-spectrum antibacterial activity against Escherichia coli and Staphylococcus aureus, as well as enhanced surface stiffness and cellular mechanoresponse manipulation. Strengthened by the addition of these metal ions, the coating elicited enhanced mechanosensing from adjacent cells, facilitating cell adhesion, spreading, proliferation, and osteogenic differentiation on the surface coating. This dual-functional PVA-TP-CA/Co surface coating offers a promising approach for improving clinical implantation outcomes

    Graphene Oxide‐Cyclic R10 Peptide Nuclear Translocation Nanoplatforms for the Surmounting of Multiple‐Drug Resistance

    Get PDF
    Multidrug resistance resulting from a variety of defensive pathways in cancer has become a global concern with a considerable impact on the mortality associated with the failure of traditional chemotherapy. Therefore, further research and new therapies are required to overcome this challenge. In this work, a cyclic R10 peptide (cR10) is conjugated to polyglycerol-covered nanographene oxide to engineer a nanoplatform for the surmounting of multidrug resistance. The nuclear translocation of the nanoplatform, facilitated by cR10 peptide, and subsequently, a laser-triggered release of the loaded doxorubicin result in efficient anticancer activity confirmed by both in vitro and in vivo experiments. The synthesized nanoplatform with a combination of different features, including active nucleus-targeting, high-loading capacity, controlled release of cargo, and photothermal property, provides a new strategy for circumventing multidrug resistant cancers.National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809Natural Science Foundation of Jiangsu Province http://dx.doi.org/10.13039/501100004608Fundamental Research Funds for the Central Universities http://dx.doi.org/10.13039/501100012226Iran Science Elites Federation and China Scholarship CouncilPeer Reviewe

    One‐Pot Covalent Functionalization of 2D Black Phosphorus by Anionic Ring Opening Polymerization

    Get PDF
    In this work, a one‐pot approach for the covalent functionalization of few‐layer black phosphorus (BP) by anionic ring opening polymerization of glycidol to obtain multifunctional BP‐polyglycerol (BP‐PG) with high amphiphilicity for near‐infrared‐responsive drug delivery and biocompatibility is reported. Straightforward synthesis in combination with exceptional biological and physicochemical properties designates functionalized BP‐PG as a promising candidate for a broad range of biomedical applications

    Graphene Sheets with Defined Dual Functionalities for the Strong SARS-CoV-2 Interactions

    Get PDF
    Search of new strategies for the inhibition of respiratory viruses is one of the urgent health challenges worldwide, as most of the current therapeutic agents and treatments are inefficient. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic and has taken lives of approximately two million people to date. Even though various vaccines are currently under development, virus, and especially its spike glycoprotein can mutate, which highlights a need for a broad-spectrum inhibitor. In this work, inhibition of SARS-CoV-2 by graphene platforms with precise dual sulfate/alkyl functionalities is investigated. A series of graphene derivatives with different lengths of aliphatic chains is synthesized and is investigated for their ability to inhibit SARS-CoV-2 and feline coronavirus. Graphene derivatives with long alkyl chains (>C9) inhibit coronavirus replication by virtue of disrupting viral envelope. The ability of these graphene platforms to rupture viruses is visualized by atomic force microscopy and cryogenic electron microscopy. A large concentration window (10 to 100-fold) where graphene platforms display strongly antiviral activity against native SARS-CoV-2 without significant toxicity against human cells is found. In this concentration range, the synthesized graphene platforms inhibit the infection of enveloped viruses efficiently, opening new therapeutic and metaphylactic avenues against SARS-CoV-2

    Multivalent bacteria binding by flexible polycationic microsheets matching their surface charge density

    Get PDF
    Aiming at the overall negative surface charge of bacteria, a new strategy of antibacterial agents based on large polymer‐modified graphene oxide (GO) sheets is assessed. The presented flexible, polycationic sheets match the size and charge density of the Escherichia coli surface charge density (2 × 1014 cm−2). These matching parameters create an unspecific but very strong bacteria adsorber by multivalent, electrostatic attraction. Their interaction with bacteria is visualized via atomic force and confocal microscopy and shows that they effectively bind and wrap around E. coli cells, and thereby immobilize them. The incubation of Gram‐negative and ‐positive bacteria (E. coli and methicillin‐resistant Staphylococcus aureus , MRSA) with these polycationic sheets leads to the inhibition of proliferation and a reduction of the colony forming bacteria over time. This new type of antibacterial agent acts in a different mode of action than classical biocides and could potentially be employed in medicinal, technical, or agriculture applications. The presented microsheets and their unspecific binding of cell interfaces could further be employed as adsorber material for bacterial filtration or immobilization for imaging, analysis, or sensor technologies

    Graphene-Assisted Synthesis of 2D Polyglycerols as Innovative Platforms for Multivalent Virus Interactions

    Get PDF
    2D nanomaterials have garnered widespread attention in biomedicine and bioengineering due to their unique physicochemical properties. However, poor functionality, low solubility, intrinsic toxicity, and nonspecific interactions at biointerfaces have hampered their application in vivo. Here, biocompatible polyglycerol units are crosslinked in two dimensions using a graphene-assisted strategy leading to highly functional and water-soluble polyglycerols nanosheets with 263 +/- 53 nm and 2.7 +/- 0.2 nm average lateral size and thickness, respectively. A single-layer hyperbranched polyglycerol containing azide functional groups is covalently conjugated to the surface of a functional graphene template through pH-sensitive linkers. Then, lateral crosslinking of polyglycerol units is carried out by loading tripropargylamine on the surface of graphene followed by lifting off this reagent for an on-face click reaction. Subsequently, the polyglycerol nanosheets are detached from the surface of graphene by slight acidification and centrifugation and is sulfated to mimic heparin sulfate proteoglycans. To highlight the impact of the two-dimensionality of the synthesized polyglycerol sulfate nanosheets at nanobiointerfaces, their efficiency with respect to herpes simplex virus type 1 and severe acute respiratory syndrome corona virus 2 inhibition is compared to their 3D nanogel analogs. Four times stronger in virus inhibition suggests that 2D polyglycerols are superior to their current 3D counterparts

    Biologische Effekte von auf schwarzem Phosphor basierenden Nanomaterialien auf Zellen und Tiere

    Get PDF
    Die bedeutenden Fortschritte bei der Anwendung von auf schwarzem Phosphor basierenden Nanomaterialien (SPNMs) sind auf deren hervorragende Eigenschaften zurĂŒckzufĂŒhren. Aufgrund der vielfĂ€ltigen Anwendungsmöglichkeiten dieser Materialien sind die Freisetzung in die Umwelt und eine anschließende Exposition des Menschen praktisch unvermeidlich. Daher muss untersucht werden, wie sich SPNMs auf biologische Systeme und die menschliche Gesundheit auswirken. In dieser umfassenden Übersicht werden die neuesten Erkenntnisse in Bezug auf Wirkungsweise, Mechanismen und Regulierungsfaktoren der endogenen ToxizitĂ€t von SPNMs in SĂ€ugetieren vorgestellt. Diese Ergebnisse bilden die Grundlage fĂŒr das VerstĂ€ndnis der biologischen Auswirkungen und haben das Ziel, Regulierungsprinzipien zur Minimierung gesundheitsschĂ€dlicher Auswirkungen festzulegen
    corecore