5,489 research outputs found

    A class of nonideal solutions. 2: Application to experimental data

    Get PDF
    Functions for the representation of the thermodynamic properties of nonideal solutions were applied to the experimental data for several highly nonideal solutions. The test solutions were selected to cover both electrolyte behavior. The results imply that the functions are fully capable of representing the experimental data within their accuracy over the whole composition range and demonstrate that many nonideal solutions can be regarded as members of the defined class of nonideal solutions

    Redesign and cascade tests of a supercritical controlled diffusion stator blade-section

    Get PDF
    A supercritical stator blade section, previously tested in cascade, and characterized by a flat-roof-top suction surface Mach number distribution, has been redesigned and retested. At near design conditions, the losses and air turning were improved over the original blade by 50 percent and 7 percent respectively. The key element in the improved performance was a small blade reshaping. This produced a continuous flow acceleration over the first one-third chord of the suction surface which successfully prevented a premature laminar separation bubble. Several recently available inviscid analysis and one fully viscous (Navier-Stokes) analysis code were used in the redesign process. The validity of these codes was enhanced by the test results

    A Water Maser and Ammonia Survey of GLIMPSE Extended Green Objects (EGOs)

    Full text link
    We present the results of a Nobeyama 45-m water maser and ammonia survey of all 94 northern GLIMPSE Extended Green Objects (EGOs), a sample of massive young stellar objects (MYSOs) identified based on their extended 4.5 micron emission. We observed the ammonia (1,1), (2,2), and (3,3) inversion lines, and detect emission towards 97%, 63%, and 46% of our sample, respectively (median rms ~50 mK). The water maser detection rate is 68% (median rms ~0.11 Jy). The derived water maser and clump-scale gas properties are consistent with the identification of EGOs as young MYSOs. To explore the degree of variation among EGOs, we analyze subsamples defined based on MIR properties or maser associations. Water masers and warm dense gas, as indicated by emission in the higher-excitation ammonia transitions, are most frequently detected towards EGOs also associated with both Class I and II methanol masers. 95% (81%) of such EGOs are detected in water (ammonia(3,3)), compared to only 33% (7%) of EGOs without either methanol maser type. As populations, EGOs associated with Class I and/or II methanol masers have significantly higher ammonia linewidths, column densities, and kinetic temperatures than EGOs undetected in methanol maser surveys. However, we find no evidence for statistically significant differences in water maser properties (such as maser luminosity) among any EGO subsamples. Combining our data with the 1.1 mm continuum Bolocam Galactic Plane Survey, we find no correlation between isotropic water maser luminosity and clump number density. Water maser luminosity is weakly correlated with clump (gas) temperature and clump mass.Comment: Astrophysical Journal, accepted. Emulateapj, 24 pages including 24 figures, plus 9 tables (including full content of online-only tables

    Asteroid fragmentation approaches for modeling atmospheric energy deposition

    Get PDF
    AbstractDuring asteroid entry, energy is deposited in the atmosphere through thermal ablation and momentum-loss due to aerodynamic drag. Analytic models of asteroid entry and breakup physics are used to compute the energy deposition, which can then be compared against measured light curves and used to estimate ground damage due to airburst events. This work assesses and compares energy deposition results from four existing approaches to asteroid breakup modeling, and presents a new model that combines key elements of those approaches. The existing approaches considered include a liquid drop or “pancake” model where the object is treated as a single deforming body, and a set of discrete fragment models where the object breaks progressively into individual fragments. The new model incorporates both independent fragments and aggregate debris clouds to represent a broader range of fragmentation behaviors and reproduce more detailed light curve features. All five models are used to estimate the energy deposition rate versus altitude for the Chelyabinsk meteor impact, and results are compared with an observationally derived energy deposition curve. Comparisons show that four of the five approaches are able to match the overall observed energy deposition profile, but the features of the combined model are needed to better replicate both the primary and secondary peaks of the Chelyabinsk curve

    In-situ observation of ULF wave activities associated with substorm expansion phase onset and current disruption

    Get PDF
    In this paper we present two substorm events with coordinated ground-based and in-situ THEMIS observations, and focus our interest on the wave activities in Pi1 and Pi2 bands from minutes before the substorm expansion phase (EP) onset to minutes after the local current disruption (CD). We find that Pi2 band (40–100 s) wave appears 1–2 min before the substorm onset and last over the entire EP interval, while higher-frequency wave within Pi1 band (10–30 s) emerges within few tens of seconds after the EP onset, intensifies during the local CD, and fades afterwards. The pre-onset Pi2 waves are attributed to a ballooning mode which acts as the seed perturbation to the substorm EP onset process. The azimuthal wavenumber estimated from the Doppler shift nature of the ballooning mode is consistent with the longitudinal "wavelength" inferred from the onset auroral structures. The Pi1 waves appearing within few tens of seconds after the EP onset are interpreted as supportive of a two-fluid instability mode of thin current sheet investigated in an accompanying paper (Liu and Liang, 2009). During the local CD, broadband wave activities from Pi2 band to well above the ion gyrofrequency are observed, suggesting the coexistence of various plasma instabilities featuring different frequency ranges

    Vitamin D supplementation does not improve human skeletal muscle contractile properties in insufficient young males

    Get PDF
    Vitamin D may be a regulator of skeletal muscle function, although human trials investigating this hypothesis are limited to predominantly elderly populations. We aimed to assess the effect of oral vitamin D3 in healthy young males upon skeletal muscle function
    • …
    corecore