59 research outputs found

    Classroom Clickers – Invigorating the Classroom Experience

    Get PDF
    Bridgewater grant-awarded Faculty share their experiences in using the TurningPoint classroom response system devices in their classroom teaching to elicit instant feedback from their students through PowerPoint and the use of wireless radio frequency devices commonly known as “classroom clickers”. Discover how you can use these devices in your own classes and department meetings for informal polling of students/colleagues or for assessment purposes

    Effects of Sponge Encrustation on the Swimming Behaviour, Energetics and Morphometry of the Scallop Chlamys Hastata

    Get PDF
    The effect of sponge encrustation on swimming ability of Chlamys hastata was determined by investigating swimming behaviour, scallop morphometry, and energy expended during swimming with and without commensal epibionts. Scallops swam significantly longer after sponge encrustation was removed from their shells, but no significant differences were detected in swimming elevation or distance. Scallops with sponge encrustation showed no adductor muscle hypertrophy or changes in shell morphometry compared to scallops without encrustation. However, C. hastatadid exhibit scaling relationships associated with maximizing swimming efficiency. Specifically, shell width and adductor muscle mass were positively allometric with shell height, while shell mass was negatively allometric with shell height. Scallops increased their energy expenditure (both aerobic and anaerobic) during valve-clapping, but no significant difference was detected between unencrusted (43·0 μmol adenosine triphosphate [ATP] consumed during a two min escape swim) and sponge-encrusted (40·0 μmol ATP) scallops. Scallops in both treatments derived 86% of the energy used for swimming from anaerobic sources. The lack of substantial differences between scallops with and without commensal sponges is partially explained by the observation that even heavy sponge encrustation increases the immersed weight of the scallop by only 5%. The presence of a sponge encrustation does not appear to inhibit swimming by this scallop species

    iPSCORE: A Resource of 222 iPSC Lines Enabling Functional Characterization of Genetic Variation across a Variety of Cell Types.

    Get PDF
    Large-scale collections of induced pluripotent stem cells (iPSCs) could serve as powerful model systems for examining how genetic variation affects biology and disease. Here we describe the iPSCORE resource: a collection of systematically derived and characterized iPSC lines from 222 ethnically diverse individuals that allows for both familial and association-based genetic studies. iPSCORE lines are pluripotent with high genomic integrity (no or low numbers of somatic copy-number variants) as determined using high-throughput RNA-sequencing and genotyping arrays, respectively. Using iPSCs from a family of individuals, we show that iPSC-derived cardiomyocytes demonstrate gene expression patterns that cluster by genetic background, and can be used to examine variants associated with physiological and disease phenotypes. The iPSCORE collection contains representative individuals for risk and non-risk alleles for 95% of SNPs associated with human phenotypes through genome-wide association studies. Our study demonstrates the utility of iPSCORE for examining how genetic variants influence molecular and physiological traits in iPSCs and derived cell lines

    NFIA Haploinsufficiency Is Associated with a CNS Malformation Syndrome and Urinary Tract Defects

    Get PDF
    Complex central nervous system (CNS) malformations frequently coexist with other developmental abnormalities, but whether the associated defects share a common genetic basis is often unclear. We describe five individuals who share phenotypically related CNS malformations and in some cases urinary tract defects, and also haploinsufficiency for the NFIA transcription factor gene due to chromosomal translocation or deletion. Two individuals have balanced translocations that disrupt NFIA. A third individual and two half-siblings in an unrelated family have interstitial microdeletions that include NFIA. All five individuals exhibit similar CNS malformations consisting of a thin, hypoplastic, or absent corpus callosum, and hydrocephalus or ventriculomegaly. The majority of these individuals also exhibit Chiari type I malformation, tethered spinal cord, and urinary tract defects that include vesicoureteral reflux. Other genes are also broken or deleted in all five individuals, and may contribute to the phenotype. However, the only common genetic defect is NFIA haploinsufficiency. In addition, previous analyses of Nfia−/− knockout mice indicate that Nfia deficiency also results in hydrocephalus and agenesis of the corpus callosum. Further investigation of the mouse Nfia+/− and Nfia−/− phenotypes now reveals that, at reduced penetrance, Nfia is also required in a dosage-sensitive manner for ureteral and renal development. Nfia is expressed in the developing ureter and metanephric mesenchyme, and Nfia+/− and Nfia−/− mice exhibit abnormalities of the ureteropelvic and ureterovesical junctions, as well as bifid and megaureter. Collectively, the mouse Nfia mutant phenotype and the common features among these five human cases indicate that NFIA haploinsufficiency contributes to a novel human CNS malformation syndrome that can also include ureteral and renal defects

    Degradation of GSPT1 causes TP53-independent cell death in leukemia whilst sparing normal hematopoietic stem cells

    Get PDF
    Targeted protein degradation is a rapidly advancing and expanding therapeutic approach. Drugs that degrade GSPT1 via the CRL4CRBN ubiquitin ligase are a new class of cancer therapy in active clinical development with evidence of activity against acute myeloid leukemia in early phase trials. However, other than activation of the integrated stress response, the downstream effects of GSPT1 degradation leading to cell death are largely undefined, and no murine models are available to study these agents. We identified the domains of GSPT1 essential for cell survival and show that GSPT1 degradation leads to impaired translation termination, activation of the integrated stress response pathway, and TP53-independent cell death. CRISPR-Cas9 screens implicated decreased translation initiation as protective to GSPT1 degradation, suggesting that cells with higher levels of translation are more susceptible to GSPT1 degradation. We defined two Crbn amino acids that prevent Gspt1 degradation in mice, generated a knock-in mouse with alteration of these residues, and demonstrated the efficacy of GSPT1-degrading drugs in vivo with relative sparing of numbers and function of long-term hematopoietic stem cells. Our results provide a mechanistic basis for the use of GSPT1 degraders for the treatment of cancer, including TP53-mutant AML

    Altering a Histone H3K4 Methylation Pathway in Glomerular Podocytes Promotes a Chronic Disease Phenotype

    Get PDF
    Methylation of specific lysine residues in core histone proteins is essential for embryonic development and can impart active and inactive epigenetic marks on chromatin domains. The ubiquitous nuclear protein PTIP is encoded by the Paxip1 gene and is an essential component of a histone H3 lysine 4 (H3K4) methyltransferase complex conserved in metazoans. In order to determine if PTIP and its associated complexes are necessary for maintaining stable gene expression patterns in a terminally differentiated, non-dividing cell, we conditionally deleted PTIP in glomerular podocytes in mice. Renal development and function were not impaired in young mice. However, older animals progressively exhibited proteinuria and podocyte ultra structural defects similar to chronic glomerular disease. Loss of PTIP resulted in subtle changes in gene expression patterns prior to the onset of a renal disease phenotype. Chromatin immunoprecipitation showed a loss of PTIP binding and lower H3K4 methylation at the Ntrk3 (neurotrophic tyrosine kinase receptor, type 3) locus, whose expression was significantly reduced and whose function may be essential for podocyte foot process patterning. These data demonstrate that alterations or mutations in an epigenetic regulatory pathway can alter the phenotypes of differentiated cells and lead to a chronic disease state
    corecore