64 research outputs found

    Vanishing of cosmological constant in nonfactorizable geometry

    Get PDF
    We generalize the results of Randall and Sundrum to a wider class of four-dimensional space-times including the four-dimensional Schwarzschild background and de Sitter universe. We solve the equation for graviton propagation in a general four dimensional background and find an explicit solution for a zero mass bound state of the graviton. We find that this zero mass bound state is normalizable only if the cosmological constant is strictly zero, thereby providing a dynamical reason for the vanishing of cosmological constant within the context of this model. We also show that the results of Randall and Sundrum can be generalized without any modification to the Schwarzschild background.Comment: 8 Pages(expanded version), Accepted in Phys. Rev.

    QED Effective Action at Finite Temperature: Two-Loop Dominance

    Full text link
    We calculate the two-loop effective action of QED for arbitrary constant electromagnetic fields at finite temperature T in the limit of T much smaller than the electron mass. It is shown that in this regime the two-loop contribution always exceeds the influence of the one-loop part due to the thermal excitation of the internal photon. As an application, we study light propagation and photon splitting in the presence of a magnetic background field at low temperature. We furthermore discover a thermally induced contribution to pair production in electric fields.Comment: 34 pages, 4 figures, LaTe

    Event Shape/Energy Flow Correlations

    Full text link
    We introduce a set of correlations between energy flow and event shapes that are sensitive to the flow of color at short distances in jet events. These correlations are formulated for a general set of event shapes, which includes jet broadening and thrust as special cases. We illustrate the method for electron-positron annihilation dijet events, and calculate the correlation at leading logarithm in the energy flow and at next-to-leading-logarithm in the event shape.Comment: 43 pages, eight eps figures; minor changes, references adde

    Stability of the Scalar Potential and Symmetry Breaking in the Economical 3-3-1 Model

    Get PDF
    A detailed study of the criteria for stability of the scalar potential and the proper electroweak symmetry breaking pattern in the economical 3-3-1 model, is presented. For the analysis we use, and improve, a method previously developed to study the scalar potential in the two-Higgs-doublet extension of the standard model. A new theorem related to the stability of the potential is stated. As a consequence of this study, the consistency of the economical 3-3-1 model emerges.Comment: to be published in EPJ C, 13 page

    The C parameter distribution in e+e- annihilation

    Full text link
    We study perturbative and non-perturbative aspects of the distribution of the C parameter in e+e- annihilation using renormalon techniques. We perform an exact calculation of the characteristic function, corresponding to the C parameter differential cross section for a single off-shell gluon. We then concentrate on the two-jet region, derive the Borel representation of the Sudakov exponent in the large-beta_0 limit and compare the result to that of the thrust T. Analysing the exponent, we distinguish two ingredients: the jet function, depending on Q^2C, summarizing the effects of collinear radiation, and a function describing soft emission at large angles, with momenta of order QC. The former is the same as for the thrust upon scaling C by 1/6, whereas the latter is different. We verify that the rescaled C distribution coincides with that of 1-T to next-to-leading logarithmic accuracy, as predicted by Catani and Webber, and demonstrate that this relation breaks down beyond this order owing to soft radiation at large angles. The pattern of power corrections is also similar to that of the thrust: corrections appear as odd powers of Lambda/(QC). Based on the size of the renormalon ambiguity, however, the shape function is different: subleading power corrections for the C distribution appear to be significantly smaller than those for the thrust.Comment: 24 pages, Latex (using JHEP3.cls), 1 postscript figur

    Final-State Phases in BDπ,DπB \to D \pi, D^* \pi, and DρD \rho Decays

    Full text link
    The final-state phases in BˉDπ,Dπ\bar{B} \to D \pi, D^* \pi, and DρD \rho decays appear to follow a pattern similar to those in DKˉπD \to \bar{K} \pi, Kˉπ\bar{K}^* \pi, and Kˉρ\bar{K} \rho decays. Each set of processes is characterized by three charge states but only two independent amplitudes, so the amplitudes form triangles in the complex plane. For the first two sets the triangles appear to have non-zero area, while for the DρD \rho or Kˉρ\bar{K} \rho decays the areas of the triangles are consistent with zero. Following an earlier discussion of this behavior for DD decays, a similar analysis is performed for B decays, and the relative phases and magnitudes of contributing amplitudes are determined. The significance of recent results on \ob \to D^{(*)0} \bar{K}^{(*)0} is noted. Open theoretical and experimental questions are indicated.Comment: 16 pages, LaTeX, 3 figures, to be submitted to Phys. Rev. D. References added; comments on new experimental results and analysi

    b -> s gamma in the left-right supersymmetric model

    Full text link
    The rare decay bsγb \to s \gamma is studied in the left-right supersymmetric model. We give explicit expressions for all the amplitudes associated with the supersymmetric contributions coming from gluinos, charginos and neutralinos in the model to one-loop level. The branching ratio is enhanced significantly compared to the standard model and minimal supersymmetric standard model values by contributions from the right-handed gaugino and squark sector. We give numerical results coming from the leading order contributions. If the only source of flavor violation comes from the CKM matrix, we constrain the scalar fermion-gaugino sector. If intergenerational mixings are allowed in the squark mass matrix, we constrain such supersymmetric sources of flavor violation. The decay bsγb \to s \gamma sets constraints on the parameters of the model and provides distinguishing signs from other supersymmetric scenarios.Comment: 12 figure

    SU(4) Chiral Quark Model with Configuration Mixing

    Full text link
    Chiral quark model with configuration mixing and broken SU(3)\times U(1) symmetry has been extended to include the contribution from c\bar c fluctuations by considering broken SU(4) instead of SU(3). The implications of such a model have been studied for quark flavor and spin distribution functions corresponding to E866 and the NMC data. The predicted parameters regarding the charm spin distribution functions, for example, \Delta c, \frac{\Delta c}{{\Delta \Sigma}}, \frac{\Delta c}{c} as well as the charm quark distribution functions, for example, \bar c, \frac{2\bar c}{(\bar u+\bar d)}, \frac{2 \bar c}{(u+d)} and \frac{(c+ \bar c)}{\sum (q+\bar q)} are in agreement with other similar calculations. Specifically, we find \Delta c=-0.009, \frac{\Delta c}{{\Delta \Sigma}}=-0.02, \bar c=0.03 and \frac{(c+ \bar c)}{\sum (q+\bar q)}=0.02 for the \chiQM parameters a=0.1, \alpha=0.4, \beta=0.7, \zeta_{E866}=-1-2 \beta, \zeta_{NMC}=-2-2 \beta and \gamma=0.3, the latter appears due to the extension of SU(3) to SU(4).Comment: 10 RevTeX pages. Accepted for publication in Phys. Rev.

    Search for CP Violation in Charged D Meson Decays

    Full text link
    We report results of a search for CP violation in the singly Cabibbo-suppressed decays D+ -> K- K+ pi+, phi pi+, K*(892)0 K+, and pi- pi+ pi+ based on data from the charm hadroproduction experiment E791 at Fermilab. We search for a difference in the D+ and D- decay rates for each of the final states. No evidence for a difference is seen. The decay rate asymmetry parameters A(CP), defined as the difference in the D+ and D- decay rates divided by the sum of the decay rates, are measured to be: A(CP)(K K pi) = -0.014 +/- 0.029, A(CP)(phi pi) = -0.028 +/- 0.036, A(CP)(K*(892) K) = -0.010 +/- 0.050, and A(CP)(pi pi pi) = -0.017 +/- 0.042.Comment: 13 pages, 5 figures, 1 table; Elsevier LaTe

    Couplings of light I=0 scalar mesons to simple operators in the complex plane

    Full text link
    The flavour and glue structure of the light scalar mesons in QCD are probed by studying the couplings of the I=0 mesons σ(600)\sigma(600) and f0(980)f_0(980) to the operators qˉq\bar{q}q, αsG2\alpha_s G^2 and to two photons. The Roy dispersive representation for the ππ\pi\pi amplitude t00(s)t_0^0(s) is used to determine the pole positions as well as the residues in the complex plane. On the real axis, t00t_0^0 is constrained to solve the Roy equation together with elastic unitarity up to the K\Kbar threshold leading to an improved description of the f0(980)f_0(980). The problem of using a two-particle threshold as a matching point is discussed. A simple relation is established between the coupling of a scalar meson to an operator jSj_S and the value of the related pion form-factor computed at the resonance pole. Pion scalar form-factors as well as two-photon partial-wave amplitudes are expressed as coupled-channel Omn\`es dispersive representations. Subtraction constants are constrained by chiral symmetry and experimental data. Comparison of our results for the qˉq\bar{q}q couplings with earlier determinations of the analogous couplings of the lightest I=1 and I=1/2I=1/2 scalar mesons are compatible with an assignment of the σ\sigma, κ\kappa, a0(980)a_0(980), f0(980)f_0(980) into a nonet. Concerning the gluonic operator αsG2\alpha_s G^2 we find a significant coupling to both the σ\sigma and the f0(980)f_0(980).Comment: 31 pages, 5 figure
    corecore