6,090 research outputs found

    A simple model for NN correlations in quasielastic lepton-nucleus scattering

    Get PDF
    We present a covariant extension of the relativistic Fermi gas model which incorporates correlation effects in nuclei. Within this model, inspired by the BCS descriptions of systems of fermions, we obtain the nuclear spectral function and from it the superscaling function for use in treating high-energy quasielastic electroweak processes. Interestingly, this model has the capability to yield the asymmetric tail seen in the experimental scaling function.Comment: 11 pages, 6 figures, Proceedings of the Twenty Seventh International Workshop on Nuclear Theory, June 23 - 28, 2008, Rila mountains, Bulgari

    Mass flow through solid 4He induced by the fountain effect

    Full text link
    Using an apparatus that allows superfluid liquid 4He to be in contact with hcp solid \4he at pressures greater than the bulk melting pressure of the solid, we have performed experiments that show evidence for 4He mass flux through the solid and the likely presence of superfluid inside the solid. We present results that show that a thermomechanical equilibrium in quantitative agreement with the fountain effect exists between two liquid reservoirs connected to each other through two superfluid-filled Vycor rods in series with a chamber filled with solid 4He. We use the thermomechanical effect to induce flow through the solid and measure the flow rate. On cooling, mass flux appears near T = 600 mK and rises smoothly as the temperature is lowered. Near T = 75 mK a sharp drop in the flux is present. The flux increases as the temperature is reduced below 75 mK. We comment on possible causes of this flux minimum.Comment: 20 pages, 22 figures, 7 table

    Quasielastic Charged Current Neutrino-nucleus Scattering

    Get PDF
    We provide integrated cross sections for quasielastic charged-current neutrino-nucleus scattering. Results evaluated using the phenomenological scaling function extracted from the analysis of experimental (e,e)(e,e') data are compared with those obtained within the framework of the relativistic impulse approximation. We show that very reasonable agreement is reached when a description of final-state interactions based on the relativistic mean field is included. This is consistent with previous studies of differential cross sections which are in accord with the universality property of the superscaling function.Comment: 5 pages, 3 figures, to be published in Phys. Rev. Let

    Superscaling Predictions for Neutral Current Quasielastic Neutrino-Nucleus Scattering

    Get PDF
    The application of superscaling ideas to predict neutral-current (NC) quasielastic (QE) neutrino cross sections is investigated. Results obtained within the relativistic impulse approximation (RIA) using the same relativistic mean field potential (RMF) for both initial and final nucleons -- a model that reproduces the experimental (e,e') scaling function -- are used to illustrate the ideas involved. While NC reactions are not so well suited for scaling analyses, to a large extent the RIA-RMF predictions do exhibit superscaling. Independence of the scaled response on the nuclear species is very well fulfilled. The RIA-RMF NC superscaling function is in good agreement with the experimental (e,e') one. The idea that electroweak processes can be described with a universal scaling function, provided that mild restrictions on the kinematics are assumed, is shown to be valid.Comment: 4 pages, 4 figures, published in PR

    Relativistic Models for Quasi-Elastic Neutrino-Nucleus Scattering

    Get PDF
    Two relativistic approaches to charged-current quasielastic neutrino-nucleus scattering are illustrated and compared: one is phenomenological and based on the superscaling behavior of electron scattering data and the other relies on the microscopic description of nuclear dynamics in relativistic mean field theory. The role of meson exchange currents in the two-particle two-hole sector is explored. The predictions of the models for differential and total cross sections are presented and compared with the MiniBooNE data.Comment: 3 pages, 3 figures, Proceedings of PANIC 2011, MIT, Cambridge, MA, July 201

    Pionic correlations and meson-exchange currents in two-particle emission induced by electron scattering

    Get PDF
    Two-particle two-hole contributions to electromagnetic response functions are computed in a fully relativistic Fermi gas model. All one-pion exchange diagrams that contribute to the scattering amplitude in perturbation theory are considered, including terms for pionic correlations and meson-exchange currents (MEC). The pionic correlation terms diverge in an infinite system and thus are regularized by modification of the nucleon propagator in the medium to take into account the finite size of the nucleus. The pionic correlation contributions are found to be of the same order of magnitude as the MEC.Comment: 14 pages, 15 figure

    Off-shell effects in the relativistic mean field model and their role in CC (anti)neutrino scattering at MiniBooNE kinematics

    Get PDF
    The relativistic mean field (RMF) model is used to describe nucleons in the nucleus and thereby to evaluate the effects of having dynamically off-shell spinors. Compared with free, on-shell nucleons as employed in some other models, within the RMF nucleons are described by relativistic spinors with strongly enhanced lower components. In this work it is seen that for MiniBooNE kinematics, neutrino charged-current quasielastic cross sections show some sensitivity to these off-shell effects, while for the antineutrino-nucleus case the total cross sections are seen to be essentially independent of the enhancement of the lower components. As was found to be the case when comparing the RMF results with the neutrino-nucleus data, the present impulse approximation predictions within the RMF also fall short of the MiniBooNE antineutrino-nucleus data.Comment: 19 pages, 7 figures, submitted to Physics Letters
    corecore