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Two-particle two-hole contributions to electromagnetic response functions are computed in a fully relativistic
Fermi gas model. All one-pion exchange diagrams that contribute to the scattering amplitude in perturbation
theory are considered, including terms for pionic correlations and meson-exchange currents (MECs). The pionic
correlation terms diverge in an infinite system and thus are regularized by modification of the nucleon propagator
in the medium to take into account the finite size of the nucleus. The pionic correlation contributions are found
to be of the same order of magnitude as the MECs.
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I. INTRODUCTION

The goal of this article is to present a fully relativistic
calculation of the two-particle two-hole (2p-2h) contributions
to the inclusive (e, e′) response functions of nuclei for
intermediate to high momentum transfers in a Fermi gas model.
Consistency with perturbation theory is maintained and all
diagrams with one-pion exchange in the nuclear current are
considered, constructed by attaching a photon to all possible
lines in the basic one-pion exchange Feynman diagram. In
this way not only meson-exchange currents (MECs) arise
(for example, where the photon is attached to the pion), but
also pionic correlation diagrams, where the virtual photon is
absorbed by one of the two interacting nucleons. Both kinds of
diagrams are considered in our model, together with the usual
virtual �-isobar electroexcitation and decay.

We are motivated by previous work presented in Refs. [1,2],
where only the MECs were included in the 2p-2h transverse
(T ) response, together with earlier work both in nonrelativistic
[3] and relativistic [4–7] regimes. The contribution found from
the 2p-2h excitations is small at the quasielastic (QE) peak,
and increases with energy transfer, being more important in
the dip region, where it is dominated by the � current. At the
nonrelativistic level attempts were also made to evaluate the
2p-2h contribution of MECs in the T response for finite nuclei
in a shell model [8,9].

The MECs are not the only two-body operators able to
induce 2p-2h excitations. The correlation operators arising
from Feynman diagrams where the photon is attached to a
nucleon line, exchanging a pion with another nucleon, are of
the same order as the MECs in the perturbative expansion and
should be included to be consistent [10–12]. These diagrams,
however, present the problem of giving an infinite answer
in a Fermi gas model. The reason is that there is a nucleon
propagator that can be on shell in the region of the quasielastic
peak. Because the response function is the square of the
amplitude, the resulting double pole gives an infinite result

after integration. In dealing with this problem, in Ref. [10] a
prescription was followed by keeping the lines with a nucleon
propagator strictly off the mass shell. A different approach was
taken in Ref. [11] by subtracting from the proper self-energy
its value on the mass shell, with the unphysical shortcoming of
obtaining negative results for the 2p-2h responses to the left of
the QE peak. Finally, in Ref. [12] a nucleon self-energy in the
medium was introduced in the nucleon propagator. In dealing
with the seven-dimensional integrals appearing in the 2p-2h
responses, some of the previous calculations have resorted to
the approximation of setting the two-hole momenta both equal
to zero in some of the diagrams [10] or by taking into account
only an average nucleon momentum [12].

In this work we revisit the double-pole problem to analyze
the nature of the divergence of the resulting contributions.
By isolating the divergent terms we are able to link them
to the infinite extension of the Fermi gas system. In fact
the double-pole term can be related to the probability of
one-nucleon emission followed by nucleon rescattering off
another nucleon, with the final ejection of two particles.
This probability is infinite, because it is proportional to the
propagation time of a real nucleon in a Fermi gas. This
fact was pointed out in Ref. [12] where it was cured, as
mentioned previously, by introducing a nucleon self-energy
with an imaginary part giving it a finite lifetime for collisions.
In this article we use a similar procedure by introducing a
finite imaginary part iε in the nucleon propagator, but with
a new meaning for the free parameter ε. Instead of being an
imaginary part of the nucleon self-energy for collisions, we
relate it to the time T that a nucleon can travel across the
nucleus before leaving it. Hence, this term accounts for the
finite size of a real nucleus in contrast to an infinite system
like the Fermi gas, where T is infinite. The value of ε can
be estimated to be roughly about 200 MeV, appreciably larger
than the usual values of the nucleon width for collisions.

The structure of this work is as follows. In Sec. II we present
our model and define the 2p-2h response functions and the
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two-body current operators. We discuss in depth the
divergence of the correlation diagrams and the need to
introduce the parameter ε in Sec. III (details of the numerical
calculation are given in the appendixes). In Sec. IV we present
results for the 2p-2h longitudinal and transverse response
functions. In the case of the correlation diagrams we present
results for several values of the parameter ε. Finally, in Sec. V
we present our conclusions.

II. MODEL FOR 2P-2H RESPONSE FUNCTIONS

We consider an electron that scatters off a nucleus transfer-
ring four-momentum Qµ = (ω, q), with ω the energy transfer
and q the momentum transfer. We follow closely the notation
of Ref. [13]. Assuming plane waves for the electron, working
in the laboratory system and taking the z direction along the
momentum transfer, the inclusive cross section is written as

dσ

d�′
edω

= σM [vLRL(q, ω) + vT RT (q, ω)], (1)

where σM is the Mott cross section, vL and vT are the
lepton kinematic factors, and the relevant quantities are
the longitudinal RL(q, ω) and transverse RT (q, ω) response
functions, respectively. These are defined as the following
components of the hadronic tensor,

RL = W 00, (2)

RT = W 11 + W 22, (3)

where

Wµν =
∑
f

〈f |Jµ(Q)|i〉∗〈f |J ν(Q)|i〉δ(Ei + ω − Ef ), (4)

and Jµ(Q) is the nuclear current operator.
In this article we take the initial nuclear state as the

relativistic Fermi gas (RFG) model ground state, |i〉 = |F 〉,
with all states with momenta below the Fermi momentum
kF occupied. The sum over final states can be decomposed
as the sum of one-particle one-hole (1p-1h) plus two-particle
two-hole (2p-2h) excitations plus additional channels. In the
impulse approximation the 1p-1h channel gives the well-
known response functions of the RFG. Here, we focus on
the 2p-2h channel where the final states are of the type
|f 〉 = |p′

1s
′
1, p′

2s
′
2, h−1

1 s1, h−1
2 s2〉, where p′

i are momenta of
relativistic final nucleons above the Fermi sea, p′

i > kF ,
with four-momenta P ′

i = (E′
i , p′

i), and Hi = (Ei, hi) are the
four-momenta of the hole states with hi < kF . The spin indices
are s ′

i and si .

A. 2p-2h response functions

Because we have two species of nucleons, the 2p-2h
responses can be further decomposed as the sum of two-proton
(PP), two-neutron (NN), and proton-neutron (PN) emission,

RK = RK (PP ) + RK (NN ) + RK (PN ). (5)

For the PP channel we write down the L response as (likewise
for the T response):

RL(PP ) = 1

4

∑
p′

1s
′
1

∑
p′

2s
′
2

∑
h1s1

∑
h2s2

∣∣〈p′
1p′

2h−1
1 h−1

2

∣∣J 0(Q)|F 〉∣∣2

× δ(E′
1 + E′

2 − ω − E1 − E2), (6)

where the spin indices are implicit in the matrix elements. The
factor 1

4 comes from antisymmetry of the wave functions, to
avoid double counting of the final states under the interchange
of the indices 1′ ↔ 2′ and 1 ↔ 2. Exploiting the antisymmetry,
the many-body matrix element of a two-body operator can be
written as the direct minus exchange part of the two-body
current matrix element,

〈p′
1p′

2h−1
1 h−1

2 |Jµ|F 〉 = 〈p′
1p′

2|Jµ|h1h2〉 − 〈p′
1p′

2|Jµ|h2h1〉,
which we write in terms of the two-body current function
jµ(p′

1, p′
2, h1, h2) to be specified below,

〈p′
1p′

2|Jµ|h1h2〉 = (2π )3δ(p′
1 + p′

2 − h1 − h2 − q)

× m2

V 2(E1E2E
′
1E

′
2)1/2

jµ(p′
1, p′

2, h1, h2).

(7)

Going to the thermodynamic limit and integrating over the
momentum p′

2 we obtain

RL(PP ) = V

4

∑
s ′

1s
′
2s1s2

∫
d3p′

1

(2π )3

d3h1

(2π )3

d3h2

(2π )3

× m4

E1E2E
′
1E

′
2

|j 0(p′
1, p′

2, h1, h2)A|2

× δ(E′
1 + E′

2 − ω − E1 − E2)θ (p′
2 − kF ), (8)

where p′
2 = h1 + h2 + q − p′

1, and the integration limits are
h1, h2 < kF , p′

1 > kF . We have defined the antisymmetrized
current function,

jµ(1′, 2′, 1, 2)A ≡ jµ(1′, 2′, 1, 2) − jµ(1′, 2′, 2, 1),

with obvious meaning for the abbreviated arguments. Expand-
ing the square inside the integral in Eq. (8), three terms are
obtained:

|jµ(1′, 2′, 1, 2)A|2 = |jµ(1′, 2′, 1, 2)|2 + |jµ(1′, 2′, 2, 1)|2
− 2Re jµ(1′, 2′, 2, 1)∗jµ(1′, 2′, 1, 2).

(9)

Changing variables 1 ↔ 2 in the second term under the
integral, we obtain the first term again. Hence we can finally
write for the PP response,

RL(PP ) = V

2

∑
s ′

1s
′
2s1s2

∫
d3p′

1

(2π )3

d3h1

(2π )3

d3h2

(2π )3

× m4

E1E2E
′
1E

′
2

[|j 0(p′
1, p′

2, h1, h2)|2

− Re j 0(p′
1, p′

2, h1, h2)∗j 0(p′
1, p′

2, h2, h1)]

× δ(E′
1 + E′

2 − ω − E1 − E2)θ (p′
2 − kF ). (10)
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Note that the factor 1
2 in front of the sum comes from the

antisymmetry of the particles (protons). A similar expression
is obtained for the NN response RL(NN ). In the case of the PN
channel we subtract the charge exchange contribution without
any symmetry term because there are no additional isospin
sums, and the result is

RL(PN ) = V
∑

s ′
1s

′
2s1s2

∫
d3p′

1

(2π )3

d3h1

(2π )3

d3h2

(2π )3

× m4

E1E2E
′
1E

′
2

|〈PN |j 0(p′
1, p′

2, h1, h2)|PN〉

− 〈NP |j 0(p′
1, p′

2, h2, h1)|PN〉|2
× δ(E′

1 + E′
2 − ω − E1 − E2)θ (p′

2 − kF ). (11)

Finally, note that the 2p-2h response is proportional to the
volume of the system V which is related to the number of
particles N (protons or neutrons) by V = 3π2N /k3

F .

B. Two-body current matrix elements

The MECs considered in this work are represented by
the Feynman diagrams of Fig. 1. The pionic four-momenta
K1, K2 are defined via K

µ

i = P ′
i
µ − H

µ

i as the four-
momenta given to the nucleons 1 and 2, respectively, by the
exchanged pion.

Assuming pseudovector nucleon-pion coupling, the fully
relativistic two-body current matrix elements are given
by [13,14]

(i) (a) and (b) Seagull or contact:

jµ
s (p′

1, p′
2, p1, p2) = f 2

m2
π

iε3abu(p′
1)τaγ5 �K1u(p1)

× FV
1

K2
1 − m2

π

u(p′
2)τbγ5γ

µu(p2)

+ (1 ↔ 2). (12)

H1 H2

P1 P2

Q
K2

(a)

H1

P1

H2

P2

Q
K1

(b)

H1

P1

H2

P2

Q

K1 K2

(c)

H1 H2

P1 P2

Q

K2

(d)

H1

P1

H2

P2

Q

K1

(e)

H1 H2

P1 P2

Q

K2

(f)

H1

P1

H2

P2

Q

K1

(g)

FIG. 1. MEC diagrams considered in the present study. Diagrams
(a) and (b) correspond to the seagull, (c) to the pionic, and (d)–(g) to
the � current, respectively.

(ii) (c) Pion in flight:

jµ
p (p′

1, p′
2, p1, p2)

= f 2

m2
π

iε3ab

Fπ (K1 − K2)µ(
K2

1 − m2
π

)(
K2

2 − m2
π

)u(p′
1)τaγ5 �K1

× u(p1)u(p′
2)τbγ5 �K2u(p2). (13)

In the previous expressions we use the Einstein con-
vention for the sum over a repeated isospin index a =
1, 2, 3. Moreover, FV

1 and Fπ are the electromagnetic
isovector nucleon and pion form factors, respectively.
The spinors are normalized according to the Bjorken
and Drell convention [15] and the pion-nucleon cou-
pling constant is f 2/4π = 0.08.

(iii) (d)–(g) � current:

j
µ
�(p′

1, p′
2, p1, p2)

= fπN�f

m2
π

1

K2
2 − m2

π

u(p′
1)T µ

a (1)u(p1)

× u(p′
2)τaγ5 �K2u(p2) + (1 ↔ 2). (14)

The vector T
µ
a (1) is related to the pion electroproduc-

tion amplitude,

T µ
a (1) = K2,ααβG�

βρ(H1 + Q)Sρµ

f (H1)TaT
†

3

+ T3T
†
a S

µρ

b (P ′
1)G�

ρβ(P ′
1 − Q)βαK2,α.

(15)

The forward � electroexcitation tensor is1

S
ρµ

f (H1) = ρµ[g1 �Q − g2H1 · Q + g3Q
2]γ5

−ρνQν

[
g1γ

µ − g2H
µ

1 + g3Q
µ
]
γ5,

(16)

and the backward tensor amplitude is

S
ρµ

b (P ′
1) = γ5[g1 �Q − g2P

′
1 · Q − g3Q

2]µρ

− γ5
[
g1γ

µ − g2P
′
1
µ − g3Q

µ
]
Qν

νρ.

(17)

The tensor µν is defined by

µν = gµν − 1
4γµγν. (18)

For the � propagator we use the usual Rarita-Schwinger
(RS) tensor,

G�
βρ(P ) = − �P + m�

P 2 − m2
�

[
gβρ − 1

3
γβγρ − 2

3

PβPρ

m2
�

− γβPρ − γρPβ

3m�

]
. (19)

In what follows we perform the substitution m� →
m� + i

2�(P ) in the denominator of the propagator
to account for the � decay probability. Finally, the
electromagnetic coupling constants gi are given by

g1 = G1

2mN

, g2 = G2

4m2
N

, g3 = G3

4m2
N

. (20)

1Note that there is a sign error in Eq. (15) of [14].
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H1 H2

P1 P2

Q

K2

(a)

H1

P1

H2

P2

Q

K1

(b)

H1 H2

P1 P2

Q

K2

(c)

H1

P1

H2

P2

Q

K1

(d)

FIG. 2. Correlation diagrams considered in the present study.
Diagrams (a) and (b) correspond to the forward, and (c) and (d)
backward contributions, respectively.

Our approach for the � follows, as a particular case,
from the more general form of the γN� Lagrangian
of Pascalutsa et al. [16]. The � coupling constants
used here are G1 = 4.2, G2 = 4, G3 = 1, and fπN� =
4 × 0.564.

The correlation current is defined in Fig. 2, and given by

jµ
cor(p

′
1, p′

2, p1, p2) = f 2

m2
π

u(p′
1)τaγ5 �K1u(p1)

1

K2
1 − m2

π

× u(p′
2)[τaγ5 �K1SF (P2 + Q)�µ(Q)

+�µ(Q)SF (P ′
2 − Q)τaγ5 �K1]u(p2)

+ (1 ↔ 2), (21)

where SF (P ) is the Feynman propagator for the nucleon,

SF (P ) = �P + m

P 2 − m2 + iε
, (22)

and �µ(Q) is the electromagnetic nucleon vertex,

�µ(Q) = F1γ
µ + i

2m
F2σ

µνQν. (23)

The nucleon form factors F1 and F2 are given by the Galster
parametrization [17].

The isospin sums and isospin matrix elements must be
performed separately for each isospin channel. Explicit ex-
pressions are given in Appendix A.

III. DIVERGENCE OF THE CORRELATION RESPONSES

The response functions computed using the correlation
current in Eq. (21) are divergent in the Fermi gas. There are two
sources for this divergence: the first one comes from the double
pole of the propagator when taking the square of the current.
This divergence can be shown to behave as 1/ε plus principal
value terms going as log ε. The second source is related to the
behavior of the principal values arising from the double and
single poles near the RFG boundary of the quasielastic peak,
where the principal values present a logarithmic divergence.

To illustrate the mathematical structure of this divergence
we isolate as an example the singularities produced by the
diagram of Fig. 2(a). The corresponding current operator can
be written as

jµ = lµ

E1 + ω − Eh1+q + iε
, (24)

where Ep =
√

m2 + p2 is the on-shell energy. We have
explicitly extracted the divergent part of the denominator, with

a pole for

Eh1+q = E1 + ω, (25)

in the limit ε → 0. The previous equation is equivalent to
the quasielastic condition for emission of an on-shell nucleon
with four-momentum H1 + Q. In fact, for a given value of h1,
Eq. (25) holds when the angle between h1 and q is given by

cos θ1 = Q2 + 2E1ω

2h1q
. (26)

Because the condition −1 < cos θ1 < 1 defines the boundary
of the quasielastic peak, the pole can always be reached in that
region.

To study the behavior of the response functions from this
pole, it is convenient to change the variable θ1 to a new variable
defined by

x1 ≡ E1 + ω − Eh1+q, (27)

in the integral over h1 in Eq. (10). Then the components of the
total current matrix element can be written as a function of x1

in the general form,

f (x1) = ϕ(x1)

x1 + iε
+ g(x1), (28)

where the first term comes from diagram 2(a) and the function
g(x1) comes from the sum of the remaining diagrams, and
is finite for x1 = 0. Because the current appears squared in
the response function, we are dealing with the integral of a
function of the kind,

|f (x1)|2 = |ϕ(x1)|2
x2

1 + ε2
+ |g(x1)|2 + 2Re

ϕ∗(x1)g(x1)

x1 − iε
. (29)

When integrating this function over x1, and taking the limit
ε → 0, the first term has a double pole for x1 = 0, whereas
the third one has a single pole. To deal with the single pole we
use the usual Plemeli relation,

1

x + iε
= P 1

x
− iπδ(x). (30)

To apply a similar relation for the double pole term, we add
and subtract the on-shell value |ϕ(0)|2/(x2

1 + ε2). Taking the
limit ε → 0 we can use relations that are valid for any function
ψ(x),∫ b

−a

ψ(x) − ψ(0)

x2 + ε2
dx → P

∫ b

−a

ψ(x) − ψ(0)

x2
dx, (31)

and∫ b

−a

ψ(0)

x2 + ε2
dx = 1

ε

[
tan−1 b

ε
+ tan−1 a

ε

]
ψ(0) ∼ π

ε
ψ(0).

(32)

Then Eq. (29) can be written in the form,

|f (x1)|2 = P |ϕ(x1)|2 − |ϕ(0)|2
x2

1

+ |g(x1)|2

+ 2P Re ϕ∗(x1)g(x1)

x1
− 2π Im ϕ∗(0)g(0)δ(x1)

+ |ϕ(0)|2
ε

πδ(x1). (33)
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The last O(1/ε) term in Eq. (33) provides the dominant
contribution to the response function, being infinite for ε → 0.
Because of the δ function, that term does not contribute outside
the quasielastic-peak region, where x1 is different from zero.

The principal values present in Eq. (33) also diverge in the
particular case in which one of the limits of integration is zero.
In that case, the principal value in Eq. (30) should be computed
instead using

P
∫ b

−a

ψ(x)

x
dx =

∫ b

−a

ψ(x) − ψ(0)

x
dx + 1

2
ψ(0) ln

b2 + ε2

a2 + ε2
,

(34)

and it gives a ln ε term if a or b is zero. That situation, in fact,
occurs throughout the quasielastic region, and in particular at
the boundary of the quasielastic peak. Therefore one expects
an additional divergence ∼O(ln ε).

The meaning of the term |ϕ(0)|2
ε

πδ(x1) is explained in what
follows. Diagram 2(a), when the intermediate nucleon is on
shell, gives the probability of a 1p-1h electroexcitation times
the probability of quasielastic nucleon scattering. Because the
interaction probability is proportional to the interaction time
T , the probability of this rescattering process is proportional
to T 2. Therefore, the cross section is proportional to T . In an
infinite system such as the Fermi gas, the intermediate nucleon
never leaves the nucleus and therefore T → ∞. However, in a
finite nucleus one expects no divergence because a high-energy
nucleon will leave the nucleus in a finite time. Therefore, the
interaction time is finite.

The relation between ε and T can also be obtained by
inspection of the momentum-space propagator in quantum
field theory [18], computed as the vacuum expectation value of
time-ordered Fermion fields. The value ε in the denominator
of the propagator can be seen as a regularization parameter in
the Fourier transform of the time-step function for a particle
with four-momentum P µ = (p0, p),∫ T/2

−T/2
dt ei(p0−Ep)t θ (t) = i

p0 − Ep + iε
, (35)

where T → ∞ and ε → 0. For a real particle, p0 − Ep = 0,
the left-hand side of the above equation is T/2, and the right-
hand side is 1/ε. Therefore,

T

2
= 1

ε
. (36)

In this article we cure the divergence of the correlation
diagram by a regularization procedure, using a finite value for
ε to account for the finite propagation time of a high-energy
nucleon in a nucleus before leaving it. To estimate the value of
ε for a nucleus such as 12C, we assume that the nucleon moves
at the velocity of light and it has to cross a distance equal to
the nuclear radius R ∼ 2 fm. Then,

ε � 2h̄

T
� 2h̄c

R
� 400

2
MeV � 200 MeV. (37)

Note that this value, ε � 200 MeV, is very different from
the nucleon width � ∼ 10 MeV which is usually obtained in
nuclear matter as the width for nuclear inelastic interaction.
In practice, the value of ε can be taken as a parameter to be

fitted to data. In the next section we perform a study of the
dependence of our results upon ε. Unless otherwise specified
we assume ε = 200 MeV.

At this point we should mention that the use of Eq. (29) to
compute the 2p-2h response functions becomes impractical
because of complications in the numerical calculation of
principal values in multidimensional integrals including the
four diagrams of Fig. 2 (and the corresponding exchange
parts). Because we are forced to use a finite value of ε, it
becomes more convenient to keep from the beginning the iε

term in the denominator of the nucleon propagator in Eq. (21).

IV. RESULTS

Here we present results for the longitudinal and transverse
response functions for inclusive two-particle emission. We
compute the 2p-2h response functions in the RFG model as the
nine-dimensional (9D) integrals given by Eqs. (10) and (11).
The energy δ function can be used to integrate over p′

1, fixing
the energy E′

1 of the first particle. More details are given in

(a)ε = 300 MeV

R
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−1
]

6005004003002001000
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]

6005004003002001000
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FIG. 3. (Color online) 2p-2h transverse response of 56Fe at q =
550 MeV/c. Three values of the parameter ε are shown. Thin solid
lines, correlation only; dotted lines, MECs only; thick solid lines,
total; dashed, RFG OB results.

044601-5



AMARO, MAIERON, BARBARO, CABALLERO, AND DONNELLY PHYSICAL REVIEW C 82, 044601 (2010)

Appendix B. By rotational invariance considerations, one of
the azimuthal angles can be fixed, multiplying at the same
time the result by a factor 2π . We choose φ′

1 = 0. At the
end we have a seven-dimensional integration to be performed
numerically. The usual procedure is to use a multidimensional
Monte Carlo (MC) integration. Because the pole structure of
the integrand is numerically delicate, in this work we use
instead a mixed Monte Carlo–Simpson integration procedure.
The Simpson algorithm is used for integration over the angles
of the two holes θ1, θ2 and of the first particle θ ′

1. The remaining
four-dimensional integral over the hole momenta h1, h2 and
their angles φ1, φ2 is made by Monte Carlo. To keep the CPU
times manageable we use a number of MC points of the order
of 103 for q = 1 GeV/c. For other values of the momentum
transfer the number of MC points is modified linearly with q.
We have performed a study of the stability of the results with
the number of MC points and have found that the error from
the integration procedure is within a few percent.

A pion-nucleon form factor is included in the two-body
currents: FπNN (Kπ ) = (�2 − m2

π )/(�2 − K2
π ), with � =

1.3 GeV. We use the same value for the πN� form factor
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FIG. 4. (Color online) The same as for Fig. 3, but now at
q = 1140 MeV/c.

in the � current. The electromagnetic form factors are those
of Galster for the nucleon, and those used in Refs. [13,14] for
the MECs.

To make contact with previous work, we apply our model
to compute the 2p-2h longitudinal and transverse response
functions for the nucleus 56Fe, and for momenta q = 550 and
1140 MeV/c. The results are presented in Figs. 3–6, where
the separate contributions of the correlation and MECs to the
2p-2h responses are also shown. The 1p-1h responses produced
by the one-body (OB) current in the relativistic Fermi gas
without interaction are also shown.

A critical input for our model is the value of the parameter
ε in the nucleon propagator, introduced to cure the divergence
of the double pole. To see how the responses for the correlation
contribution depend on ε we show results for three different
values: ε = 100, 200, and 300 MeV. For ε = 100 MeV,
the correlation 2p-2h contribution presents a shape with a
maximum in the region of the quasielastic peak, but with a long
tail extended to high transferred energies. The maximum is
reminiscent of the pole structure of the nucleon propagator, and
therefore a resonance appears for kinematics corresponding

(a) ε = 300 MeV
R

L
[G

eV
−1

]

6005004003002001000

50

40

30

20

10

0

(b) ε = 200 MeV

R
L

[G
eV

−1
]

6005004003002001000

50

40

30

20

10

0

(c) ε = 100 MeV

ω [MeV]

R
L

[G
eV

−1
]

6005004003002001000

50

40

30

20

10

0

FIG. 5. (Color online) The same as for Fig. 3, but now for RL.
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FIG. 6. (Color online) The same as for Fig. 3, but now for RL at
q = 1140 MeV/c.

to the quasielastic condition in Eq. (26). A shift to higher
energies (of the order of ∼40 MeV) is seen in the case of q =
550 MeV/c (Figs. 3 and 5). Indeed for this value of q the
phase space for two-particle emission causes a suppression of
the low-energy side of the response function.

The resonant structure produced by the 2p-2h correlation
contribution diminishes significantly with increasing values
of the parameter ε. Notice that for ε � 200 MeV there is no
maximum located at the QE peak.

For an even lower value of the escape width, say ε =
50 MeV, the magnitude of the resonant peak is of the same
size as the OB response function. This correction coming
from 2p-2h states is obviously too large to be compatible
with experimental data that are already of the order of
the 1p-1h response at the region of the QE peak. It should
be mentioned that, although the 2p-2h contribution should be
added to the 1p-1h one, the latter should be first corrected for
final-state interaction (FSI) contributions not included in the
bare RFG results shown in the figures. In fact, FSIs contribute
importantly to one-nucleon emission through the coupling of
1p-1h to 2p-2h states in the final nucleus [19]. These processes
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FIG. 7. (Color online) 2p-2h correlation contribution to the L
and T responses of 56Fe for q = 550 MeV/c. Three values of the
parameter ε are shown. With dotted lines from up to down, ε = 100,

200, 300, respectively. Solid lines, RFG one-body responses.

involve, in particular, two-pion exchange, and are, therefore, of
the same order as the 2p-2h response in the perturbative series
because it is the square of one-pion exchange matrix element.
The inclusion of such contributions is out of the scope of the
present study.

The dependence of the correlation responses on the param-
eter ε is better appreciated in Figs. 7 and 8, where we show its
contribution for the three chosen values of ε in the same plot.
In the QE region the height of the responses approximately
reduces to one-half when ε doubles. This behavior follows
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FIG. 8. (Color online) The same as for Fig. 7, but now at q =
1140 MeV/c.
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because of the leading 1/ε dependence in Eq. (33), coming
from the pole in the propagator. For high ω the results are more
similar and they are almost independent of ε in the high-energy
tail. In this case (i.e., large ω), there is no pole in the integrand
and the contribution from the propagator is less sensitive to
the precise value of ε.

Let us return now to Figs. 3–6, where the MEC separate
contribution is also shown. The transverse response (Figs. 3
and 4) has a large peak with a maximum around ω = (m2

� +
q2)1/2 − mN that comes from the � propagator appearing
in the � current. It has the same resonant structure as the
correlation current, but located in the region of the � peak,
where the real pion emission cross section has a maximum. We
do not include the pion emission channel in our calculation.
Both channels should be summed up to obtain the total
inclusive (e, e′) cross section.
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FIG. 9. (Color online) Contributions to the transverse response
of 56Fe for q = 550 MeV/c. The dashed lines are the 1p-1h response
with OB current only. The rest of the lines are 2p-2h contributions.
(a) (Top panel) Thin solid, correlation only; dotted, MECs only; thick
solid, total. (b) (Middle panel) Thin solid, correlation only; dotted,
seagull + pionic only; thick solid, � only. (c) (Bottom panel) Thin
solid, pion in flight only; dotted, seagull + pionic only; thick solid,
seagull only.

The � peak is very small in the longitudinal response pre-
sented in Figs. 5 and 6. This is consistent with the predominant
transverse character of the � current, hence providing a small
contribution to the longitudinal channel. For q = 550 MeV the
MEC 2p-2h contribution is large (small) in the T (L) response.
However, for q = 1140 MeV (Figs. 4 and 6) we find a larger
effect in RL coming from the MEC seagull and pionic at-large
energy transfer. Indeed in a nonrelativistic expansion in powers
of q/mN the time component of the MECs is of higher order
than the transverse one. However, for q = 1140 MeV, q/mN

is larger than one, and the relative L component of the MECs,
compared to the T one, starts to increase.

In the case of the correlation current, we observe that its
contribution, compared with the OB responses, is similar in
the T and L channels. Note that in the correlation current
(Fig. 2) the photon couples directly to a nucleon with the
same interaction vertex �µ as the OB current. The other side
of the diagram with a pion coupled to a second nucleon is
independent of the particular component of the current.

The separate effects of the different currents contributing to
the 2p-2h transverse responses are shown in Figs. 9 and 10. As
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FIG. 10. (Color online) The same as for Fig. 9, but now at q =
1140 MeV/c.
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FIG. 11. (Color online) Transverse response of 56Fe at q = 550
and 1140 MeV/c. Thin solid, correlation only for ε = 200 MeV;
dotted, MECs only; thick solid, total one- plus two- body responses;
dashed, RFG 1p-1h response with OB current only.

shown, the seagull plus pionic (SPP) currents alone give a small
effect compared with the contributions from the � and corre-
lations. In fact, for ε = 200 MeV the correlation response is
much larger (by a factor 2 or 3) than the SPP response function
(middle panels in Figs. 9 and 10). We also observe that the sep-
arate seagull contribution is larger in magnitude than the pionic
one, which is negligible for q = 1140 MeV/c. Note that the
two currents interfere destructively and partially cancel when
both are considered in the SPP responses (bottom panels).

In Fig. 11 we show the transverse response obtained by
adding the total 2p-2h contributions to the OB response.
A word of caution should be raised when analyzing these
results. First, we have not added the correlation nor MEC
corrections to the 1p-1h channel. Moreover, the two-pion-
exchange interaction generates self-energy corrections to the
OB current that lead to interference effects of the same order in
the expansion as the corrections included here. As an example,
FSIs are known to redistribute the strength of the responses,
producing a hardening, a reduction of the maximum, and an
increase of the high-energy tail [20]. Recently, furthermore, a
large effect from both MECs and FSIs was found in the 1p-1h
channel for high momentum transfer [21], which should be
added to the present results. Finally, the process of real pion
emission (not included here) also gives a contribution in the
transverse response located mainly in the region of the � peak.

So far we have presented results for intermediate to high
momentum transfer. Results for lower values of q = 370 and
410 MeV/c are shown in Figs. 12 and 13 for the T and L re-
sponse functions. This allows us to compare the present results
with previous nonrelativistic calculations [10]. In Fig. 12 the
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FIG. 12. (Color online) Transverse structure function ST of 56Fe
at q = 370 and 410 MeV/c. The parameter ε = 200 MeV. To compare
with Figs. 11 and 12 of [10], ST is defined as [22] ST = MA

4π
RT . Thick

lines, RFG 1p-1h results; dashed lines, 2p-2h, MECs only; thin solid
lines, 2p-2h total, MECs plus correlations.

structure function ST = MA

4π
RT is presented, to allow a direct

comparison with Figs. 11 and 12 of Ref. [10]. The separate
MEC and correlation contributions to the 2p-2h T response
shown in Fig. 12 are similar to the ones presented in Ref. [10].
The MEC produces a tail above the QE peak that increases with
the energy transfer. The presence of correlations leads to an
additional, significant rise of the tail. Note that our correlation
results are obtained for ε = 200 MeV. In Ref. [10] another
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FIG. 13. (Color online) The same as for Fig. 12, but now for the
longitudinal structure function SL = MA

4π
RL.
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prescription to deal with the nucleon pole was adopted. From
our results we conclude that both prescriptions are compatible
numerically. The OB response of Ref. [10] included RPA
correlations producing a reduction and hardening of the OB
response. The 2p-2h longitudinal responses were not computed
in Ref. [10], because the time components of the MECs are of
higher order in the nonrelativistic reduction and, hence, they
were expected to be very small. However, our prediction for
the correlation 2p-2h contribution in the L response, presented
in Fig. 13, shows a similar effect as in the T response (i.e.,
a tail also appears for high-energy transfer in the L response
coming from correlations). Contrary to the T channel, MECs
give no contribution in the L response.

Because the 2p-2h excitation is produced in this work by
one-pion exchange, the results are strongly dependent on the
details of this particular interaction. This is illustrated in Fig. 14
where we show how the results depend on the strong πNN

form factor for q = 1140 MeV/c. The results without a form
factor (i.e., with FπNN = 1) are about three times as large
as the results with the form factor. This is different from the
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FIG. 14. (Color online) 2p-2h T response of 56Fe at q = 1140
MeV/c. Thin lines with πNN form factor. Thick lines without form
factor (FπNN = 1). (a) Total; (b) correlations only; (c) MECs only.
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FIG. 15. (Color online) 2p-2h MEC-only contribution to the
transverse response of 56Fe. Solid lines, computed with the � form
factors used by [14]; dashed lines, computed with the � form factors
used in Ref. [1]; dotted, RFG OB response.

findings at low momentum transfer [9], where the pion form
factor can be safely ignored.

Another issue is the dependence of the results on the
� form factors used in this work, both the electromagnetic
and the strong ones, which are somewhat different from the
parametrization used in the 2p-2h MEC calculation of Ref. [1].
Calculations done with both sets of parameters are compared in
Fig. 15. Our calculation gives a larger contribution for the T re-
sponse than the one of Ref. [1]. Hence, the use of the same form
factors reduces the discrepancy between the two calculations.
Some of the remaining differences could be linked to other
details of the models, in particular, to the different Lagrangian
chosen for � electroexcitation. We should note that the two
models are fully independent. Although all the spin sums
are performed analytically in Ref. [1] resulting in thousands
of terms to be numerically integrated, in this work we first
compute the spin matrix elements of the current and later we
evaluate the squares and perform the sums numerically.

Before concluding, we would like to stress that the 2p-2h
responses in the present model are crucially dependent on
details of the pion interaction. A critical ingredient of the model
is the value of the parameter ε, identified with an escape width
of a high-energy nucleon from the nucleus. We have proven
that a value ε ∼ 200 MeV leads to results in agreement with the
previous calculation of Ref. [10]. This parameter ε is different
from the usual interaction width of particle states, usually
associated with matrix elements of the phenomenological
imaginary optical potential derived from elastic scattering
data [19]. It was also computed in nuclear matter in a
semiphenomenological approach [23]. The resulting width for
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100 MeV nucleons is of the order of 10 MeV, which is too small
to give reasonable results in our calculation. This is because of
the 1/ε behavior of the 2p-2h response divergence in the QE
region, where the pole is being hit.

Because of this divergent behavior, for ε = 5 MeV the
results would be almost one order of magnitude larger than
the OB responses at the maximum. We have checked that the
1/ε term in the forward diagrams is the main contribution to
the 2p-2h correlations in the QE region for ε > 20 MeV.

The importance of correlations, for the same value of ε,
increases with the nuclear mass. We have checked that for
the case of 12C where the sizes of the correlation responses,
relative to the OB, are about 20% smaller than for 56Fe. This is
what one would expect, because the number of correlated pairs
increases with A(A − 1)/2. Moreover, because the estimated
value of ε depends on the nuclear radius, Eq. (37) indicates that
one should use larger ε values for lighter nuclei, which, in turn,
would reduce even more the size of the correlation responses.
Thus, we expect an important A dependence of correlations
on the nuclear responses coming from the A dependence of
the escape width ε. A more detailed study of this issue will be
presented in forthcoming work.

V. CONCLUSIONS

In this work we have presented a fully relativistic model
of inclusive two-particle emission reactions induced by
electrons. Starting with the free relativistic Fermi gas we have
considered all Feynman diagrams in a perturbative expansion
of the scattering amplitude with one-photon and one-pion
exchange producing 2p-2h excitations. Those diagrams can be
classified in two sets, namely MEC and correlation currents.
In the latter there is a nucleon propagator that can be put on
shell giving a double pole from (p0 − Ep + iε)−2 when taking
the square of the current matrix element. The corresponding
2p-2h response function diverges as 1/ε when ε → 0 plus
additional ln ε terms. Giving a physical meaning to ε as the
escape width of the nucleus, namely, twice the inverse of
the nucleon propagation time, the fact that the corresponding
response is infinite is related to the infinite extension of the
Fermi gas. Using a finite value of ε we account for the finite
size of the nucleus, hence, getting a finite result. Having no
way to compute ε in a Fermi gas, we take it as a parameter.
Estimating in a crude way a value around ∼200 MeV, we
have made an exploratory study of the results as a function
of ε. The correlation effects decrease with increasing ε. Our
analysis shows that the assumption ε ∼ 200–300 MeV is not
unreasonable, whereas for smaller ε values the correlation
contribution increases significantly in the QE region.

Within this framework we have studied the properties
and effects of the different 2p-2h contributions and other
ingredients of the model on the transverse and longitudinal
response functions of 56Fe for intermediate to high momentum
transfer. The MECs give rise to a wide peak in the region
of the � resonance that dominates the T response. In the L
channel the MECs are small for low momentum transfer, but
they importantly increase for high momentum above the QE
peak where their contribution is of the same size as the OB
longitudinal response. Concerning the correlations, they add

to the MECs in the high-energy tail and are of the same order
of magnitude. The contribution of the correlations is similar in
the L and T responses.

The main goal of this article was to study the effect of
2p-2h pion correlations in the L and T response, analyzing the
properties of these effects as a function of a single parameter ε.
In future work we plan to investigate more physically founded
ways to “fine tune” this parameter, including its dependence
on kinematics and nuclear species. Finite-size calculations in
conjunction with the use of semiphenomenological fits of the
nucleon spreading width or fits to existing (e, e′) data will also
be explored.

ACKNOWLEDGMENTS

J.E.A. thanks E. Ruiz-Arriola for useful discussions.
This work was partially supported by DGI (Spain) (Grant
Nos. FIS2008-01143, FPA2006-13807-C02-01, FIS2008-
04189, and FPA2007-62216), the Junta de Andalucı́a,
the INFN-MEC collaboration agreement (Project Nos.
FPA2008-03770-E-INFN and ACI2009-1053), and the Span-
ish Consolider-Ingenio 2000 programmed CPAN (Project No.
CSD2007-00042). T.W.D. was supported in part by the US
Department of Energy under cooperative agreement Grant
No. DE-FC02-94ER40818.

APPENDIX A: ISOSPIN MATRIX ELEMENTS

In the model used in this work we compute explicitly
the isospin matrix elements of the current operator in the
different channels PP (two protons), NN (two neutrons), and
PN (proton-neutron) emission.

1. PN channel

We first consider the channel in which we eject a PN pair.
In this case there is no symmetry in the wave function and
we assume that the first hole is a proton and the second is a
neutron (i.e., the initial isospin wave function is |PN〉). The
final state can be |PN〉 or |NP 〉 depending on if there is or is
not charge exchange.

In the case of the MEC seagull and pion in flight, Figs. 1(a)–
1(c), this is the only channel that contributes. The isospin
operator is

U ≡ ε3abτ
(1)
a τ

(2)
b , (A1)

where repeated indices are meant to be summed. The relevant
isospin matrix element is obtained by operating over a PN
state,

〈NP |U |PN〉 = −2i. (A2)

In the case of the correlation current we find four isospin
operators for the diagrams of Fig. 2, including the isospin
dependence in the single nucleon current �µ, namely,

τ (1)
a �µ(1)τ (2)

a , τ (1)
a τ (2)

a �µ(2), (A3)

�µ(1)τ (1)
a τ (2)

a , τ (1)
a �µ(2)τ (2)

a . (A4)

Operating over the initial |PN〉 state we obtain

τ (1)
a τ (2)

a �µ(2)|PN〉 = 2�µN |NP 〉 − �µN |PN〉, (A5)

τ (1)
a �µ(2)τ (2)

a |PN〉 = 2�µP |NP 〉 − �µN |PN〉, (A6)
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τ (1)
a �µ(1)τ (2)

a |PN〉 = 2�µP |NP 〉 − �µP |PN〉, (A7)

�µ(1)τ (1)
a τ (2)

a |PN〉 = 2�µN |NP 〉 − �µP |PN〉. (A8)

In the case of the � current, diagrams of Figs. 1 (d)–1(g), we
find the following isospin operators:

T (1)
a T

†(1)
3 τ (2)

a , T
(1)

3 T †(1)
a τ (2)

a , (A9)

τ (1)
a T (2)

a T
†(2)

3 , τ (1)
a T

(2)
3 T †(2)

a , (A10)

where Ti are the 3
2 → 1

2 isospin transition operators verifying

TiT
†
J = 2

3
δij − i

3
εijkτk. (A11)

For instance, we have

T (1)
a T

†(1)
3 τ (2)

a = 2

3
τ (2)
z − i

3
[τ (1) × τ (2)]z, (A12)

T
(1)

3 T †(1)
a τ (2)

a = 2

3
τ (2)
z + i

3
[τ (1) × τ (2)]z, (A13)

and similarly changing 1 ↔ 2. Operating over the initial |PN〉
state we obtain

T (1)
a T

†(1)
3 τ (2)

a |PN〉 = − 2
3 |NP 〉 − 2

3 |PN〉, (A14)

T
(1)

3 T †(1)
a τ (2)

a |PN〉 = 2
3 |NP 〉 − 2

3 |PN〉, (A15)

τ (1)
a T (2)

a T
†(2)

3 |PN〉 = 2
3 |NP 〉 + 2

3 |PN〉, (A16)

τ (1)
a T

(2)
3 T †(2)

a |PN〉 = − 2
3 |NP 〉 + 2

3 |PN〉. (A17)

2. PP channel

In the case of two-proton emission only the � and
correlation diagrams contribute. In the case of the correlations,
the isospin operators over the initial |PP 〉 state give

τ (1)
a τ (2)

a �µ(2)|PP 〉 = �µP |PP 〉, (A18)

and exactly the same result for the remaining three operators.
In the case of the � we have

T (1)
a T

†(1)
3 τ (2)

a |PP 〉 = 2
3 |PP 〉, (A19)

and exactly the same answer for the remaining three operators.

3. NN channel

Once more only the � and correlation diagrams contribute.
In the case of the correlations, we have

τ (1)
a τ (2)

a �µ(2)|NN〉 = �µN |NN〉, (A20)

and the same for the remaining three operators.

Finally, for the � we have

T (1)
a T

†(1)
3 τ (2)

a |NN〉 = − 2
3 |NN〉, (A21)

and the same answer again for the remaining three operators.

APPENDIX B: INTEGRATION OF THE
ENERGY δ FUNCTION

The 9D integral for the 2p-2h response functions is of the
type,∫

d3p′
1d

3h1d
3h2δ(E1 + E2 + ω − E′

1 − E′
2)f (h1, h2, p′

1, p′
2),

(B1)

where p′
2 = h1 + h2 + q − p′

1. The δ function allows us to
perform one integration analytically imposing energy conser-
vation. Therefore, for fixed values of the two-hole momenta
h1, h2 and for fixed values of the two emission angles θ ′

1, φ
′
1 of

particle 1, we can integrate over the momentum p′
1, fixing the

energy of the first particle. To this end, we change variables
p′

1 → E′ = E′
1 + E′

2. Taking into account that both energies
E′

1 and E′
2 depend on p′

1 to compute the Jacobian of the
transformation, we obtain

dp′
1 = dE′∣∣∣ p′

1
E′

1
− p′

2·p′
1

E′
2p

′
1

∣∣∣ , (B2)

where the momentum of the final nucleon for fixed emission
angles θ ′

1, φ
′
1 is obtained by solving the energy conservation

equation. This is a second-degree equation with two solutions
given explicitly by

p′
1 = a

b

⎛
⎝v ± v0

√
1 − bm2

N

a2

⎞
⎠ , (B3)

where

a = 1
2p′2, (B4)

b = E′2 − p′2 cos2 β ′
1, (B5)

v0 = E′, (B6)

v = p′ cos β ′
1. (B7)

E′ = E1 + E2 + ω is the final total energy, p′ = h1 + h2 + q
is the final total momentum, and β ′

1 is the angle between p′
1

and p′. To compute the integral we add the contributions from
these two solutions, corresponding to two possible final states
compatible with energy-momentum conservation.
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