5,308 research outputs found

    Infusing Problem-Based Learning (PBL) Into Science Methods Courses Across Virginia

    Get PDF
    This article outlines the results of a collaborative study of the effects of infusing problem-based learning (PBL) into K-12 science methods courses across four universities in Virginia. Changes in pre-service teachers\u27 attitudes surrounding science teaching were measured before and after completing a science methods course in which they experienced PBL first-hand as participants, and then practiced designing their own PBL units for use in their future classrooms. The results indicate that exposure to PBL enhances pre-service teachers\u27 knowledge of inquiry methods and self-efficacy in teaching science

    Oxidative stress dependent microRNA-34a activation via PI3Kα reduces the expression of sirtuin-1 and sirtuin-6 in epithelial cells

    Get PDF
    Sirtuin-1 (SIRT1) and SIRT6, NAD(+)-dependent Class III protein deacetylases, are putative anti-aging enzymes, down-regulated in patients with chronic obstructive pulmonary disease (COPD), which is characterized by the accelerated ageing of the lung and associated with increased oxidative stress. Here, we show that oxidative stress (hydrogen peroxide) selectively elevates microRNA-34a (miR-34a) but not the related miR-34b/c, with concomitant reduction of SIRT1/-6 in bronchial epithelial cells (BEAS2B), which was also observed in peripheral lung samples from patients with COPD. Over-expression of a miR-34a mimic caused a significant reduction in both mRNA and protein of SIRT1/-6, whereas inhibition of miR-34a (antagomir) increased these sirtuins. Induction of miR-34a expression with H2O2 was phosphoinositide-3-kinase (PI3K) dependent as it was associated with PI3Kα activation as well as phosphatase and tensin homolog (PTEN) reduction. Importantly, miR-34a antagomirs increased SIRT1/-6 mRNA levels, whilst decreasing markers of cellular senescence in airway epithelial cells from COPD patients, suggesting that this process is reversible. Other sirtuin isoforms were not affected by miR-34a. Our data indicate that miR-34a is induced by oxidative stress via PI3K signaling, and orchestrates ageing responses under oxidative stress, therefore highlighting miR-34a as a new therapeutic target and biomarker in COPD and other oxidative stress-driven aging diseases

    Quantum turbulence at finite temperature: the two-fluids cascade

    Get PDF
    To model isotropic homogeneous quantum turbulence in superfluid helium, we have performed Direct Numerical Simulations (DNS) of two fluids (the normal fluid and the superfluid) coupled by mutual friction. We have found evidence of strong locking of superfluid and normal fluid along the turbulent cascade, from the large scale structures where only one fluid is forced down to the vorticity structures at small scales. We have determined the residual slip velocity between the two fluids, and, for each fluid, the relative balance of inertial, viscous and friction forces along the scales. Our calculations show that the classical relation between energy injection and dissipation scale is not valid in quantum turbulence, but we have been able to derive a temperature--dependent superfluid analogous relation. Finally, we discuss our DNS results in terms of the current understanding of quantum turbulence, including the value of the effective kinematic viscosity

    Regulation of the cerebral circulation: bedside assessment and clinical implications

    Get PDF
    The regulation of the cerebral circulation relies on the complex interplay between cardiovascular, respiratory, and neural physiology. In health, these physiologic systems act to maintain an adequate cerebral blood flow (CBF) through modulation of hydrodynamic parameters; the resistance of cerebral vessels, and the arterial, intracranial, and venous pressures. In critical illness, however, one or more of these parameters can be compromised raising the possibility of disturbed CBF regulation and its pathophysiologic sequelae. The rigorous assessment of the cerebral circulation requires not only measuring CBF and its hydrodynamic determinants but also assessing the stability of CBF in response to changes in arterial pressure (cerebral autoregulation), the reactivity of CBF to a vasodilator (COâ‚‚ reactivity for example), and the dynamic regulation of arterial pressure (baroreceptor sensitivity). Ideally, cerebral circulation monitors in critical care should be continuous, physically robust, allow for both regional and global CBF assessment, and be conducive to application at the bedside. The regulation of the cerebral circulation is impaired not only in primary neurologic conditions that affect the vasculature such as subarachnoid haemorrhage and stroke, but also in conditions that affect the regulation of intracranial pressure (such as traumatic brain injury and hydrocephalus) or arterial blood pressure (sepsis, or cardiac dysfunction). Importantly, this impairment is often associated with poor patient outcome. At present, the assessment of the cerebral circulation is primarily used as a research tool to elucidate pathophysiology or prognosis. However, when combined with other physiologic signals and online analytical techniques, cerebral circulation monitoring has the appealing potential to not only prognosticate patients, but also direct critical care management.JD is supported by a Woolf Fisher scholarship (NZ). MC is partially supported by the NIHR

    Stable Fractional Vortices in the Cyclic States of Bose-Einstein Condensates

    Full text link
    We propose methods to create fractional vortices in the cyclic state of an F = 2 spinor Bose-Einstein condensate by manipulating its internal spin structure using pulsed microwave and laser fields. The stability of such vortices is studied as a function of the rotation frequency of the confining harmonic trap both in pancake and cigar shaped condensates. We find a range of parameters for which the so-called 1/3-vortex state is energetically favorable. Such fractional vortices could be created in condensates of 87Rb atoms using current experimental techniques facilitating probing of topological defects with non-Abelian statistics.Comment: 5 pages, 2 figure

    Vibrations of a Columnar Vortex in a Trapped Bose-Einstein Condensate

    Get PDF
    We derive a governing equation for a Kelvin wave supported on a vortex line in a Bose-Einstein condensate, in a rotating cylindrically symmetric parabolic trap. From this solution the Kelvin wave dispersion relation is determined. In the limit of an oblate trap and in the absence of longitudinal trapping our results are consistent with previous work. We show that the derived Kelvin wave dispersion in the general case is in quantitative agreement with numerical calculations of the Bogoliubov spectrum and offer a significant improvement upon previous analytical work.Comment: 5 pages with 1 figur

    Sputtering yields exceeding 1000 by 80keV Xe irradiation of Au nanorods

    Get PDF
    Using experiments and computer simulations, we find that 80 keV Xe ion irradiation of Au nanorods can produce sputtering yields exceeding 1000, which to our knowledge are the highest yields reported for sputtering by single ions in the nuclear collision regime. This value is enhanced by more than an order of magnitude compared to the same irradiation of flat Au surfaces. Using MD simulations, we show that the very high yield can be understood as a combination of enhanced yields due to low incoming angles at the sides of the nanowire, as well as the high surface-to-volume ratio causing enhanced explosive sputtering from heat spikes. We also find, both in experiments and simulations, that channeling has a strong effect on the sputtering yield: if the incoming beam happens to be aligned with a crystal axis of the nanorod, the yield can decrease to about 100

    Vortex lattices in a stirred Bose-Einstein condensate

    Full text link
    We stir with a focused laser beam a Bose-Einstein condensate of 87^{87}Rb atoms confined in a magnetic trap. We observe the formation of a single vortex for a stirring frequency exceeding a critical value. At larger rotation frequencies we produce states of the condensate for which up to eleven vortices are simultaneously present. We present measurements of the decay of a vortex array once the stirring laser beam is removed

    Coherent laminar and turbulent motion of toroidal vortex bundles

    Full text link
    Motivated by experiments performed in superfluid helium, we study numerically the motion of toroidal bundles of vortex filaments in an inviscid fluid. We find that the evolution of these large-scale vortex structures involves the generalised leapfrogging of the constituent vortex rings. Despite three dimensional perturbations in the form of Kelvin waves and vortex reconnections, toroidal vortex bundles retain their coherence over a relatively large distance (compared to their size), in agreement with experimental observations.Comment: 22 pages, 12 figure

    Defective monocyte-derived macrophage phagocytosis is associated with exacerbation frequency in COPD

    Get PDF
    Background Lower airway bacterial colonisation (LABC) in COPD patients is associated with increased exacerbation frequency and faster lung function decline. Defective macrophage phagocytosis in COPD drives inflammation, but how defective macrophage function contributes to exacerbations is not clear. This study investigated the association between macrophage phagocytosis and exacerbation frequency, LABC and clinical parameters. Methods Monocyte-derived macrophages (MDM) were generated from 92 stable COPD patients, and at the onset of exacerbation in 39 patients. Macrophages were exposed to fluorescently labelled Haemophilus influenzae or Streptococcus pneumoniae for 4 h, then phagocytosis measured by fluorimetry and cytokine release by ELISA. Sputum bacterial colonisation was measured by PCR. Results Phagocytosis of H. influenzae was negatively correlated with exacerbation frequency (r = 0.440, p < 0.01), and was significantly reduced in frequent vs. infrequent exacerbators (1.9 × 103 RFU vs. 2.5 × 103 RFU, p < 0.01). There was no correlation for S. pneumoniae. There was no association between phagocytosis of either bacteria with age, lung function, smoking history or treatment with inhaled corticosteroids, or long-acting bronchodilators. Phagocytosis was not altered during an exacerbation, or in the 2 weeks post-exacerbation. In response to phagocytosis, MDM from exacerbating patients showed increased release of CXCL-8 (p < 0.001) and TNFα (p < 0.01) compared to stable state. Conclusion Impaired COPD macrophage phagocytosis of H. influenzae, but not S. pneumoniae is associated with exacerbation frequency, resulting in pro-inflammatory macrophages that may contribute to disease progression. Targeting these frequent exacerbators with drugs that improve macrophage phagocytosis may prove beneficial
    • …
    corecore