6,150 research outputs found

    Scale Separation Scheme for Simulating Superfluid Turbulence: Kelvin-Wave Cascade

    Get PDF
    A Kolmogorov-type cascade of Kelvin waves--the distortion waves on vortex lines--plays a key part in the relaxation of superfluid turbulence at low temperatures. We propose an efficient numeric scheme for simulating the Kelvin wave cascade on a single vortex line. The idea is likely to be generalizable for a full-scale simulation of different regimes of superfluid turbulence. With the new scheme, we are able to unambiguously resolve the cascade spectrum exponent, and thus to settle the controversy between recent simulations [1] and recently developed analytic theory [2]. [1] W.F. Vinen, M. Tsubota and A. Mitani, Phys. Rev. Lett. 91, 135301 (2003). [2] E.V. Kozik and B.V. Svistunov, Phys. Rev. Lett. 92, 035301 (2004).Comment: 4 pages, RevTe

    Quasielastic Charged Current Neutrino-nucleus Scattering

    Get PDF
    We provide integrated cross sections for quasielastic charged-current neutrino-nucleus scattering. Results evaluated using the phenomenological scaling function extracted from the analysis of experimental (e,e)(e,e') data are compared with those obtained within the framework of the relativistic impulse approximation. We show that very reasonable agreement is reached when a description of final-state interactions based on the relativistic mean field is included. This is consistent with previous studies of differential cross sections which are in accord with the universality property of the superscaling function.Comment: 5 pages, 3 figures, to be published in Phys. Rev. Let

    Friction factors for smooth pipe flow

    Get PDF
    Friction factor data from two recent pipe flow experiments are combined to provide a comprehensive picture of the friction factor variation for Reynolds numbers from 10 to 36,000,000

    Pionic correlations and meson-exchange currents in two-particle emission induced by electron scattering

    Get PDF
    Two-particle two-hole contributions to electromagnetic response functions are computed in a fully relativistic Fermi gas model. All one-pion exchange diagrams that contribute to the scattering amplitude in perturbation theory are considered, including terms for pionic correlations and meson-exchange currents (MEC). The pionic correlation terms diverge in an infinite system and thus are regularized by modification of the nucleon propagator in the medium to take into account the finite size of the nucleus. The pionic correlation contributions are found to be of the same order of magnitude as the MEC.Comment: 14 pages, 15 figure

    Mass flow through solid 4He induced by the fountain effect

    Full text link
    Using an apparatus that allows superfluid liquid 4He to be in contact with hcp solid \4he at pressures greater than the bulk melting pressure of the solid, we have performed experiments that show evidence for 4He mass flux through the solid and the likely presence of superfluid inside the solid. We present results that show that a thermomechanical equilibrium in quantitative agreement with the fountain effect exists between two liquid reservoirs connected to each other through two superfluid-filled Vycor rods in series with a chamber filled with solid 4He. We use the thermomechanical effect to induce flow through the solid and measure the flow rate. On cooling, mass flux appears near T = 600 mK and rises smoothly as the temperature is lowered. Near T = 75 mK a sharp drop in the flux is present. The flux increases as the temperature is reduced below 75 mK. We comment on possible causes of this flux minimum.Comment: 20 pages, 22 figures, 7 table

    Relativistic Models for Quasi-Elastic Neutrino-Nucleus Scattering

    Get PDF
    Two relativistic approaches to charged-current quasielastic neutrino-nucleus scattering are illustrated and compared: one is phenomenological and based on the superscaling behavior of electron scattering data and the other relies on the microscopic description of nuclear dynamics in relativistic mean field theory. The role of meson exchange currents in the two-particle two-hole sector is explored. The predictions of the models for differential and total cross sections are presented and compared with the MiniBooNE data.Comment: 3 pages, 3 figures, Proceedings of PANIC 2011, MIT, Cambridge, MA, July 201

    Superscaling and neutral current quasielastic neutrino-nucleus scattering

    Get PDF
    The superscaling approach is applied to studies of neutral current neutrino reactions in the quasielastic regime. Using input from scaling analyses of electron scattering data, predictions for high-energy neutrino and antineutrino cross sections are given and compared with results obtained using the relativistic Fermi gas model. The influence of strangeness content inside the nucleons in the nucleus is also explored.Comment: 28 pages, 8 figures, accepted for publication in Phys.Rev.
    corecore