23 research outputs found

    Electrode initiated proton-coupled electron transfer to promote degradation of a nickel( ii ) coordination complex

    Get PDF
    Electrochemical analysis of a nickel compound that degrades permitted a peek into the decomposition mechanism

    Phosphorene: Synthesis, Scale-up, and Quantitative Optical Spectroscopy

    Full text link
    Phosphorene, a two-dimensional (2D) monolayer of black phosphorus, has attracted considerable theoretical interest, although the experimental realization of monolayer, bilayer, and few-layer flakes has been a significant challenge. Here we systematically survey conditions for liquid exfoliation to achieve the first large-scale production of monolayer, bilayer, and few-layer phosphorus, with exfoliation demonstrated at the 10-gram scale. We describe a rapid approach for quantifying the thickness of 2D phosphorus and show that monolayer and few-layer flakes produced by our approach are crystalline and unoxidized, while air exposure leads to rapid oxidation and the production of acid. With large quantities of 2D phosphorus now available, we perform the first quantitative measurements of the material's absorption edge-which is nearly identical to the material's band gap under our experimental conditions-as a function of flake thickness. Our interpretation of the absorbance spectrum relies on an analytical method introduced in this work, allowing the accurate determination of the absorption edge in polydisperse samples of quantum-confined semiconductors. Using this method, we found that the band gap of black phosphorus increased from 0.33 +/- 0.02 eV in bulk to 1.88 +/- 0.24 eV in bilayers, a range that is larger than any other 2D material. In addition, we quantified a higher-energy optical transition (VB-1 to CB), which changes from 2.0 eV in bulk to 3.23 eV in bilayers. This work describes several methods for producing and analyzing 2D phosphorus while also yielding a class of 2D materials with unprecedented optoelectronic properties

    Experimental Demonstration of an Electride as a 2D Material

    Get PDF
    Because of their loosely bound electrons, electrides offer physical properties useful in chemical synthesis and electronics. For these applications and others, nano-sized electrides offer advantages, but to-date no electride has been synthesized as a nanomaterial. We demonstrate experimentally that Ca2_2N, a layered electride in which layers of atoms are separated by layers of a 2D electron gas (2DEG), can be exfoliated into two-dimensional (2D) nanosheets using liquid exfoliation. The 2D flakes are stable in a nitrogen atmosphere or in select organic solvents for at least one month. Electron microscopy and elemental analysis reveal that the 2D flakes retain the crystal structure and stoichiometry of the parent 3D Ca2_2N. In addition, the 2D flakes exhibit metallic character and an optical response that agrees with DFT calculations. Together these findings suggest that the 2DEG is preserved in the 2D material. With this work, we bring electrides into the nano-regime and experimentally demonstrate a 2D electride, Ca2_2N

    pH-Triggered reversible morphological inversion of orthogonally-addressable poly(3-acrylamidophenylboronic acid)-block-poly(acrylamidoethylamine) micelles and their shell crosslinked nanoparticles

    Get PDF
    Functionally-responsive amphiphilic core-shell nanoscopic objects, capable of either complete or partial inversion processes, were produced by the supramolecular assembly of pH-responsive block copolymers, without or with covalent crosslinking of the shell layer, respectively. A new type of well-defined, dual-functionalized boronic acid- and amino-based diblock copolymer poly(3-acrylamidophenylboronic acid)30-block-poly(acrylamidoethylamine)25 (PAPBA30-b-PAEA25) was synthesized by sequential reversible addition-fragmentation chain transfer (RAFT) polymerization and then assembled into cationic micelles in aqueous solution at pH 5.5. The micelles were further cross-linked throughout the shell domain comprised of poly(acrylamidoethylamine) by reaction with a bis-activated ester of 4,15-dioxo-8,11-dioxa-5,14-diazaoctadecane-1,18-dioic acid, upon increase of the pH to 7, to different cross-linking densities (2%, 5% and 10%), forming well-defined shell cross-linked nanoparticles (SCKs) with hydrodynamic diameters of ca. 50 nm. These smart micelles and SCKs presented switchable cationic, zwitterionic and anionic properties, and existed as stable nanoparticles with high positive surface charge at low pH (pH = 2, zeta potential ~ +40 mV) and strong negative surface charge at high pH (pH = 12, zeta potential ~ −35 mV). 1H NMR spectroscopy, X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), transmission electron microscopy (TEM), atomic force microscopy (AFM), and zeta potential, were used to characterize the chemical compositions, particle sizes, morphologies and surface charges. Precipitation occurred near the isoelectric points (IEP) of the polymer/particle solutions, and the IEP values could be tuned by changing the shell cross-linking density. The block copolymer micelles were capable of full reversible morphological inversion as a function of pH, by orthogonal protonation of the PAEA and hydroxide association with the PAPBA units, whereas the SCKs underwent only reptation of the PAPBA chain segments through the crosslinked shell of PAEA as the pH was elevated. Further, these nanomaterials also showed D-glucose-responsive properties

    Carbon Microelectrodes with a Renewable Surface

    Get PDF
    Electrode fouling decreases sensitivity and can be a substantial limitation in electrochemical experiments. In this work we describe an electrochemical procedure that constantly renews the surface of a carbon microelectrode using periodic triangle voltage excursions to an extended anodic potential at a scan rate of 400 Vs−1. This methodology allows for the regeneration of an electrochemically active surface and restores electrode sensitivity degraded by irreversible adsorption of chemical species. We show that repeated voltammetric sweeps to moderate potentials in aqueous solution causes oxidative etching of carbon thereby constantly renewing the electrochemically active surface. Oxidative etching was established by tracking surface-localized fluorine atoms with XPS, by monitoring changes in carbon surface morphology with AFM on pyrolyzed photoresist films, and also by optical and electron microscopy. The use of waveforms with extended anodic potentials showed substantial increases in sensitivity towards the detection of catechols. This enhancement arose from the adsorption of the catechol moiety that could be maintained with a constant regeneration of the electrode surface. We also demonstrate that application of the extended waveform could restore the sensitivity of carbon microelectrodes diminished by irreversible adsorption (electrode fouling) of byproducts resulting from the electrooxidation and polymerization of tyramine. Overall, this work brings new insight into the factors that affect electrochemical processes at carbon electrodes and provides a simple method to remove or reduce fouling problems associated with many electrochemical experiments

    Submillimeter Follow-up of WISE-Selected Hyperluminous Galaxies

    Get PDF
    We have used the Caltech Submillimeter Observatory (CSO) to follow-up a sample of WISE-selected, hyperluminous galaxies, so called W1W2-dropout galaxies. This is a rare (~ 1000 all-sky) population of galaxies at high redshift (peaks at z=2-3), that are faint or undetected by WISE at 3.4 and 4.6 um, yet are clearly detected at 12 and 22 um. The optical spectra of most of these galaxies show significant AGN activity. We observed 14 high-redshift (z > 1.7) W1W2-dropout galaxies with SHARC-II at 350 to 850 um, with 9 detections; and observed 18 with Bolocam at 1.1 mm, with five detections. Warm Spitzer follow-up of 25 targets at 3.6 and 4.5 um, as well as optical spectra of 12 targets are also presented in the paper. Combining WISE data with observations from warm Spitzer and CSO, we constructed their mid-IR to millimeter spectral energy distributions (SEDs). These SEDs have a consistent shape, showing significantly higher mid-IR to submm ratios than other galaxy templates, suggesting a hotter dust temperature. We estimate their dust temperatures to be 60-120 K using a single-temperature model. Their infrared luminosities are well over 10^{13} Lsun. These SEDs are not well fitted with existing galaxy templates, suggesting they are a new population with very high luminosity and hot dust. They are likely among the most luminous galaxies in the Universe. We argue that they are extreme cases of luminous, hot dust-obscured galaxies (DOGs), possibly representing a short evolutionary phase during galaxy merging and evolution. A better understanding of their long-wavelength properties needs ALMA as well as Herschel data.Comment: Will be Published on Sep 1, 2012 by Ap

    Thiol–Ene Modified Amorphous Carbon Substrates: Surface Patterning and Chemically Modified Electrode Preparation

    No full text
    Amorphous carbon (aC) films are chemically stable under ambient conditions or when interfaced with aqueous solutions, making them a promising material for preparing biosensors and chemically modified electrodes. There are a number of wet chemical methods capable of tailoring the reactivity and wettability of aC films, but few of these chemistries are compatible with photopatterning. Here, we introduce a method to install thiol groups directly onto the surface of aC films. These terminal thiols are compatible with thiol–ene click reactions, which allowed us to rapidly functionalize and pattern the surface of the aC films. We thoroughly characterized the aC films and confirmed the installation of surface-bound thiols does not significantly oxidize the surface or change its topography. We also determined the conditions needed to selectively attach alkene-containing molecules to these films and show the reaction is proceeding through a thiol-mediated reaction. Lastly, we demonstrate the utility of our approach by photopatterning the aC films and preparing ferrocene-modified aC electrodes. The chemistry described here provides a rapid means of fabricating sensors and preparing photoaddressable arrays of (bio)­molecules on stable carbon interfaces
    corecore