78 research outputs found
Recommended from our members
Error Behaviour In Optical Networks
Optical fibre communications are now widely used in many applications, including local area computer networks. I postulate that many future optical LANs will be required to operate with limited optical power budgets for a variety of reasons, including increased system complexity and link speed, low cost components and minimal increases in transmit power. Some developers will wish to run links with reduced power budget margins, and the received data in these systems will be more susceptible to errors than has been the case previously.
The errors observed in optical systems are investigated using the particular case of Gigabit Ethernet on fibre as an example. Gigabit Ethernet is one of three popular optical local area interconnects which use 8B/10B line coding, along with Fibre Channel and Infiniband, and is widely deployed. This line encoding is also used by packet switched optical LANs currently under development. A probabilistic analysis follows the effects of a single channel error in a frame, through the line coding scheme and the MAC layer frame error detection mechanisms. Empirical data is used to enhance this original analysis, making it directly relevant to deployed systems.
Experiments using Gigabit Ethernet on fibre with reduced power levels at the receiver to simulate the effect of limited power margins are described. It is found that channel bit error rate and packet loss rate have only a weakly deterministic relationship, due to interactions between a number of non-uniform error characteristics at various network sub-layers. Some data payloads suffer from high bit error rates and low packet loss rates, compared to others with lower bit error rates and yet higher packet losses. Experiments using real Internet traffic contribute to the development of a novel model linking packet loss, the payload damage rate, and channel bit error rate. The observed error behaviours at various points in the physical and data link layers are detailed. These include data-dependent channel errors; this error hot- spotting is in contrast to the failure modes observed in a copper-based system. It is also found that both multiple channel errors within a single code-group, and multiple error instances within a frame, occur more frequently than might be expected. The overall effects of these error characteristics on the ability of cyclic redundancy checks (CRCs) to detect errors, and on the performance of higher layers in the network, is considered.
This dissertation contributes to the discussion of layer interactions, which may lead to un-foreseen performance issues at higher levels of the network stack, and extends it by considering the physical and data link layers for a common form of optical link. The increased risk of errors in future optical networks, and my findings for 8B/10B encoded optical links, demonstrate the need for a cross-layer understanding of error characteristics in such systems. The development of these new networks should take error performance into account in light of the particular requirements of the application in question.The UK Engineering and Physical Sciences Research Council and Marconi Corporation supported my work financially through an Industrial CASE studentship
The MrCYP52 Cytochrome P450 Monoxygenase Gene of Metarhizium robertsii Is Important for Utilizing Insect Epicuticular Hydrocarbons
Fungal pathogens of plants and insects infect their hosts by direct penetration of the cuticle. Plant and insect cuticles are covered by a hydrocarbon-rich waxy outer layer that represents the first barrier against infection. However, the fungal genes that underlie insect waxy layer degradation have received little attention. Here we characterize the single cytochrome P450 monoxygenase family 52 (MrCYP52) gene of the insect pathogen Metarhizium robertsii, and demonstrate that it encodes an enzyme required for efficient utilization of host hydrocarbons. Expressing a green florescent protein gene under control of the MrCYP52 promoter confirmed that MrCYP52 is up regulated on insect cuticle as well as by artificial media containing decane (C10), extracted cuticle hydrocarbons, and to a lesser extent long chain alkanes. Disrupting MrCYP52 resulted in reduced growth on epicuticular hydrocarbons and delayed developmental processes on insect cuticle, including germination and production of appressoria (infection structures). Extraction of alkanes from cuticle prevented induction of MrCYP52 and reduced growth. Insect bioassays against caterpillars (Galleria mellonella) confirmed that disruption of MrCYP52 significantly reduces virulence. However, MrCYP52 was dispensable for normal germination and appressorial formation in vitro when the fungus was supplied with nitrogenous nutrients. We conclude therefore that MrCYP52 mediates degradation of epicuticular hydrocarbons and these are an important nutrient source, but not a source of chemical signals that trigger infection processes
Breeding of high nutrition function rice line ″Jupeihongjing No.1″ and its nutrition and application
″Jupeihongjing No.1″ is an early late-maturity japonica rice variiety with high fuctional nutritions,which was developed by Development Center of Plant Germplasm Resources,Shanghai Normal University,China.″Jupeihongjing No.1″ is of high-yielding,giant embryo and red brown-rice grains and high anthocyanins.Further analyses showed that ″Jupeihongjing No.1″ have higher nutritions than common rice varieties espicallly for γ-amino butyric Acid (GABA) and vitamin E have twice content of common rice varieties.The results showed that the ″Jupeihongjing No.1″ is of significant nutritions and application value
Facile One-Pot Immobilization of a Novel Thermostable Carboxylesterase from Geobacillus uzenensis for Continuous Pesticide Degradation in a Packed-Bed Column Reactor
The novel carboxylesterase gene (est741) was cloned from Geobacillus uzenensis. The optimal pH and temperature of Est741 were 8.0 and 50 °C. Through site-directed mutation, the optimum temperature of the mutant M160K(EstM160K) was increased from 50 to 60 °C, and showed enhanced T1/2 of 2.5 h at 70 °C in comparison to the wild type (1.3 h). EstM160K was successfully expressed Pichia pastoris and EstM160K fermentation broth was directly immobilized on epoxy-functionalized supports via a one-pot strategy to obtain the immobilized enzyme lx-EstM160K. Additionally, lx-EstM160K showed enhanced T1/2 of 36.8 h at 70 °C in comparison to free enzyme. lx-EstM160K could degrade various pyrethroid pesticides. After 40 min reaction with 50 U of the lx-EstM160K, the malathion removal was 95.8% with a malathion concentration of 20 mg/L. When 2.5 g lx-EstM160K was added to the 10 mL column reactor with the concentration of bifenthrin was 500 mg/L and the transfer rate of the pump was 0.7 mL/min, the degradation rate of lx-EstM160K to bifenthrin was 90.4%. lx-EstM160K exhibited high operational stability and maintained 72% initial activity after ten batches of continuous reaction for bifenthrin pesticide biodegradation
Influence of driving conditions on the emission characteristics of China VI heavy-duty vehicles
In order to study the feasibility of the low load cycle (LLC) condition applied to China’s heavy-duty trucks, this paper selects a China Ⅵ heavy-duty trucks with 100% load to study the pollutant emission and driving condition characteristics of LLC, C-WTVC and CHTC-HT on chassis dynamometer. Vehicle specific power (VSP) is adopted as analysis method. The results show that the emission of pollutants (NOX, PN, CO2) under LLC cycle is higher than that under C-WTVC and CHTC-HT. the NOx emission and PN emission of the LLC are about 1 order of magnitude and 3 orders of magnitude higher than those under C-WTVC and CHTC-HT respectively. Compared with C-WTVC and CHTC-HT, CO2 emission of the LLC has the highest total emission performance, while the average emission rate of each VSP interval has the lowest performance, about 3.7g/s
- …