144 research outputs found
A DHHC-type zinc finger protein gene regulates shoot branching in Arabidopsis
Formation of plant architecture is a complicated biological phenomenon and is influenced by a variety of factors such as genotype, hormone, environment and nutrition. In this study, an activation-tagging mutant, scc10-D (suppressor of cry1cry2) grown in long-day (16-h light/8-h dark) condition showed enhanced shoot branching. The mRNA expression of six genes adjacent to the T-DNA insertion locus were analyzed by reverse transcriptase polymerase chain reaction (RT-PCR), and the transcript level of a DHHC-type zinc finger protein gene, At5g04270, was found to increase markedly in the scc10-D mutant. The At5g04270 gene was then cloned and over-expressed in Arabidopsis. It was found that the At5g04270 over-expression lines had the features of enhanced shoot branching, while the T-DNA mutant of At5g04270 gene, SALK_006515, showed decreased shoot branching when compared to the wild type (WT). These results suggest that At5g04270 plays an important role in regulating shoot branching in Arabidopsis.Key words: Arabidopsis, DHHC-type zinc finger protein, At5g04270, shoot branching
A photo-responsive F-box protein FOF2 regulates floral initiation by promoting FLC expression in Arabidopsis.
Floral initiation is regulated by various genetic pathways in response to light, temperature, hormones and developmental status; however, the molecular mechanisms underlying the interactions between different genetic pathways are not fully understood. Here, we show that the photoresponsive gene FOF2 (F-box of flowering 2) negatively regulates flowering. FOF2 encodes a putative F-box protein that interacts specifically with ASK14, and its overexpression results in later flowering under both long-day and short-day photoperiods. Conversely, transgenic plants expressing the F-box domain deletion mutant of FOF2 (FOF2ΔF), or double loss of function mutant of FOF2 and FOL1 (FOF2-LIKE 1) present early flowering phenotypes. The late flowering phenotype of the FOF2 overexpression lines is suppressed by the flc-3 loss-of-function mutation. Furthermore, FOF2 mRNA expression is regulated by autonomous pathway gene FCA, and the repressive effect of FOF2 in flowering can be overcome by vernalization. Interestingly, FOF2 expression is regulated by light. The protein level of FOF2 accumulates in response to light, whereas it is degraded under dark conditions via the 26S proteasome pathway. Our findings suggest a possible mechanistic link between light conditions and the autonomous floral promotion pathway in Arabidopsis
Knowledge, attitude, and practice of healthcare workers on early gastrointestinal cancer in China
ObjectiveGastrointestinal cancer is the leading cause of cancer-related death in China, and its early screening is largely recommended by healthcare workers. This study investigated the knowledge, attitudes, and practice (KAP) of healthcare workers on early gastrointestinal cancer (EGC).MethodsThis cross-sectional study was conducted on healthcare workers who volunteered to participate from 30 hospitals in China between September and December 2022. A self-administered questionnaire including 37 questions was developed.ResultsA total of 545 completed questionnaires were finally obtained. Healthcare workers had moderate knowledge level [9.22 ± 1.80 (65.88±12.89%), total score: 14], positive attitude [21.84 ± 2.67 (91.01 ± 11.14%), total score: 24], and excellent practice level [19.07 ± 4.43 (79.47 ± 18.44%), total score: 24] on EGC. Pearson's correlation analysis suggested that knowledge score was positively correlated with attitude (r = 0.264, P < 0.001) and practice score (r = 0.140, P = 0.001), and higher attitude score was significantly correlated with higher practice score (r = 0.380, P < 0.001), which were supported and reinforced by structural equation modeling. In addition, subgroup analysis showed that knowledge scores might be influenced by sex, age, education, type of hospital, type of occupation, professional title, and years of working (all P < 0.05); attitude scores might be influenced by years of working (P < 0.05); and practice scores were statistically distinct among groups of different sex, department, and years of working (all P < 0.05).ConclusionHealthcare workers have moderate knowledge level, positive attitude, and excellent practice levels on EGC. Good knowledge and positive attitude might be correlated with excellent practice. KAP level might be influenced by sociodemographic characteristics
Association of Antioxidative Enzymes Polymorphisms with Efficacy of Platin and Fluorouracil-Based Adjuvant Therapy in Gastric Cancer
Background/Aims: Imbalance of oxidative/antioxidative enzymes in cells is associated with carcinogenesis and cancer cell chemoresistance. The aim of this study was to examine the clinical significance of potentially functional single nucleotides polymorphisms (SNPs) in antioxidative enzymes, GPxs and CAT, in stages II and III gastric cancer patients. Methods: A total of 591 gastric cancer patients who had radical gastrectomy were recruited. 207 patients received platinum and fluorouracil-based (PF-based) adjuvant chemotherapy and 384 patients were untreated. GPx1 rs1050450, GPx2 rs4902346, GPx3 rs736775, rs3828599 and CAT rs769218 were genotyped in the DNA samples extracted from paraffin-embedded tumor tissue. Results: CAT rs769218 was significantly correlated with the overall survival (OS) in the dominant model (P = 0.014). Multivariate analysis revealed that CAT rs769218 GA/AA (HR, 0.715; 95%CI, 0.562-0.910, P = 0.006) was an independent prognostic marker indicating improved survival. After adjustments, GPx3 rs736775 TC/CC was significantly associated with improved OS (HR, 0.621; 95%CI, 0.399-0.965; P=0.034) in patients treated with PF-based adjuvant chemotherapy, and CAT rs769218 GA/AA was significantly associated with improved OS (HR, 0.646; 95% CI, 0.482-0.864; P = 0.003) in the untreated patients. PF-based chemotherapy significantly decreased risk of death for patients carrying GPx3 rs736775 TC/CC and age ≤ 60 years or with diffused type adenocarcinoma compared to surgery alone. Conclusion: our findings suggested CAT rs769218 and GPx3 rs736775 may be considered as prognostic markers in gastric cancer. Patient stratification by GPx3 rs736775 and conventional pathological parameters may provide additional predictive information in treatment decision-making
Border row effects improved the spatial distributions of maize and peanut roots in an intercropping system, associated with improved yield
BackgroundBorder row effects impact the ecosystem functions of intercropping systems, with high direct interactions between neighboring row crops in light, water, and nutrients. However, previous studies have mostly focused on aboveground, whereas the effects of intercropping on the spatial distribution of the root system are poorly understood. Field experiments and planting box experiments were combined to explore the yield, dry matter accumulation, and spatial distribution of root morphological indexes, such as root length density (RLD), root surface area density (RSAD), specific root length (SRL), and root diameter (RD), of maize and peanut and interspecific interactions at different soil depths in an intercropping system.ResultsIn the field experiments, the yield of intercropped maize significantly increased by 33.45%; however, the yield of intercropped peanut significantly decreased by 13.40%. The land equivalent ratio (LER) of the maize–peanut intercropping system was greater than 1, and the advantage of intercropping was significant. Maize was highly competitive (A = 0.94, CR=1.54), and the yield advantage is mainly attributed to maize. Intercropped maize had higher RLD, RSAD, and SRL than sole maize, and intercropped peanut had lower RLD, RSAD, and SRL than sole peanut. In the interspecific interaction zone, the increase in RLD, RSAD, SRL, and RD of intercropped maize was greater than that of intercropped peanut, and maize showed greater root morphological plasticity than peanut. A random forest model determined that RSAD significantly impacted yield at 15–60 cm, while SRL had a significant impact at 30–60 cm. Structural equation modeling revealed that root morphology indicators had a greater effect on yield at 30–45 cm, with interactions between indicators being more pronounced at this depth.ConclusionThese results show that border-row effects mediate the plasticity of root morphology, which could enhance resource use and increase productivity. Therefore, selecting optimal intercropping species and developing sustainable intercropping production systems is of great significance
The DNA Repair Gene APE1 T1349G Polymorphism and Risk of Gastric Cancer in a Chinese Population
Background: Apurinic/apyrimidinic endonuclease 1 (APE1) has a central role in the repair of apurinic apyrimidic sites through both its endonuclease and its phosphodiesterase activities. A common APE1 polymorphism, T1349G (rs3136820), was previously shown to be associated with the risk of cancers. Objective: We hypothesized that the APE1 T1349G polymorphism is also associated with risk of gastric cancer. Methods: In a hospital-based case-control study of 338 case patients with newly diagnosed gastric cancer and 362 cancerfree controls frequency-matched by age and sex, we genotyped the T1349G polymorphism and assessed its associations with risk of gastric cancer. Results: Compared with the APE1 TT genotype, individuals with the variant TG/GG genotypes had a significantly increased risk of gastric cancer (odds ratio = 1.69, 95 % confidence interval = 1.19–2.40), which was more pronounced among subgroups of aged #60 years, male, ever smokers, and ever drinkers. Further analyses revealed that the variant genotypes were associated with an increased risk for diffuse-type, low depth of tumor infiltration (T1 and T2), and lymph node metastasis gastric cancer. Conclusions: The APE1 T1349G polymorphism may be a marker for the development of gastric cancer in the Chinese population. Larger studies are required to validate these findings in diverse populations
A Novel High-Throughput Vaccinia Virus Neutralization Assay and Preexisting Immunity in Populations from Different Geographic Regions in China
Background: Pre-existing immunity to Vaccinia Tian Tan virus (VTT) resulting from a large vaccination campaign against smallpox prior to the early 1980s in China, has been a major issue for application of VTT-vector based vaccines. It is essential to establish a sensitive and high-throughput neutralization assay to understand the epidemiology of Vaccinia-specific immunity in current populations in China. Methodology/Principal Findings: A new anti-Vaccinia virus (VACV) neutralization assay that used the attenuated replication-competent VTT carrying the firefly luciferase gene of Photinus pyralis (rTV-Fluc) was established and standardized for critical parameters that included the choice of cell line, viral infection dose, and the infection time. The current study evaluated the maintenance of virus-specific immunity after smallpox vaccination by conducting a non-randomized, crosssectional analysis of antiviral antibody-mediated immune responses in volunteers examined 30–55 years after vaccination. The rTV-Fluc neutralization assay was able to detect neutralizing antibodies (NAbs) against Vaccinia virus without the ability to differentiate strains of Vaccinia virus. We showed that the neutralizing titers measured by our assay were similar to those obtained by the traditional plaque reduction neutralization test (PRNT). Using this assay, we found a low prevalence of NAb to VTT (7.6%) in individuals born before 1980 from Beijing and Anhui provinces in China, and when present, anti-VTT NAb titers were low. No NAbs were detected in all 222 samples from individuals born after 1980. There was no significan
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
- …