69 research outputs found

    Real time object tracking via a mixture model

    Get PDF

    Towards hand-object gesture extraction from depth image

    Get PDF

    Activity recognition for ASD children based on joints estimation

    Get PDF

    Investigations into the failure mechanisms of coal bursts based on a real burst event in the Tangshan coal mine

    Get PDF
    To investigate the failure mechanisms of coal bursts in the longwalls of underground coal mines, a case study based on the real coal burst in the Tangshan coal mine occurring on 2 August 2019 was carried out to analyze the cause and basic theories of the coal burst and, thus, propose approaches and methods to mitigate the damage. The coal burst occurred mainly due to the sliding of coal from the longwall ribs and the simultaneous uplifting of the floor. As a result of the longwall retraction, the roof above the coal seam was too stable to collapse, forming a long hanging roof behind the longwall. Because the longwall acted as a fulcrum, the hanging roof acted like a saw, exerting massive loads on the longwall. As a result, the roof in front of the longwall tended to slope upward, leaving the underlying coal seam unconfined. Due to the horizontal stresses, the longwall ribs collapsed into the longwall, causing the coal seam to break out. These findings could help improve the fundamental understanding of the failure mechanisms of coal breakouts and, thus, aid in the development of measures to prevent such occurrences

    Energy-Aware Network Planning for Wireless Cellular System with Inter-Cell Cooperation

    Full text link

    Numerical simulation study on suppression effect of water mist on PMMA combustion under external radiant heat flux

    Get PDF
    Numerical model was built with fire dynamic simulator and theocratical simulation was carried out to investigate the suppression effect of water mist on ignition and combustion process of typical solid material polymethyl methacrylate under external radiant heat flux. Characteristic parameters such as ignition time, surface temperature, heat release rate and temperature distribution of flame central plane during ignition and combustion process under different thermal radiant fluxes were obtained and compared with experimental results. The suppression effect of spray droplets on ignition and combustion process was analyzed and discussed. The results show the theoretical calculations of combustion characteristic parameters are in good agreement with experimental measurements. Water mist droplets can effectively delay the ignition time. Quantitative data proves that the water mist flow rate at 0.9 L/(min·m2) can delay the ignition time of samples by about 1,100 s while the radiant heat flux is 50 kW/m2. The simulation results can provide theoretical support and data reference for typical solid material fire prevention and fire extinguishment in practice

    BFC-POD-ROM Aided Fast Thermal Scheme Determination for China’s Secondary Dong-Lin Crude Pipeline with Oils Batching Transportation

    No full text
    Since the transportation task of China’s Secondary Dong-Lin crude pipeline has been changed from Shengli oil to both Shengli and Oman oils, its transportation scheme had to be changed to “batch transportation”. To determine the details of batch transportation, large amounts of simulations should be performed, but massive simulation times could be costly (they can take hundreds of days with 10 computers) using the finite volume method (FVM). To reduce the intolerable time consumption, the present paper adopts a “body-fitted coordinate-based proper orthogonal decomposition reduced-order model” (BFC-POD-ROM) to obtain faster simulations. Compared with the FVM, the adopted method reduces the time cost of thermal simulations to 2.2 days from 264 days. Subsequently, the details of batch transportation are determined based on these simulations. The Dong-Lin crude oil pipeline has been safely operating for more than two years using the determined scheme. It is found that the field data are well predicted by the POD reduced-order model with an acceptable error in crude oil engineering

    Targeted Molecular Imaging Probes Based on Magnetic Resonance Imaging for Hepatocellular Carcinoma Diagnosis and Treatment

    No full text
    Hepatocellular carcinoma (HCC) is the sixth most commonly malignant tumor and the third leading cause of cancer-related death in the world, and the early diagnosis and treatment of patients with HCC is core in improving its prognosis. The early diagnosis of HCC depends largely on magnetic resonance imaging (MRI). MRI has good soft-tissue resolution, which is the international standard method for the diagnosis of HCC. However, MRI is still insufficient in the diagnosis of some early small HCCs and malignant nodules, resulting in false negative results. With the deepening of research on HCC, researchers have found many specific molecular biomarkers on the surface of HCC cells, which may assist in diagnosis and treatment. On the other hand, molecular imaging has progressed rapidly in recent years, especially in the field of cancer theranostics. Hence, the preparation of molecular imaging probes that can specifically target the biomarkers of HCC, combined with MRI testing in vivo, may achieve the theranostic purpose of HCC in the early stage. Therefore, in this review, taking MR imaging as the basic point, we summarized the recent progress regarding the molecular imaging targeting various types of biomarkers on the surface of HCC cells to improve the theranostic rate of HCC. Lastly, we discussed the existing obstacles and future prospects of developing molecular imaging probes as HCC theranostic nanoplatforms
    • …
    corecore