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Abstract—Human motion recognition is a trending
topic and could be applied in many areas, the mo-
tion estimation of ASD children is more challenging
because of the high uncertainty of their activities, we
thus introduced a novel method which is designed
for estimating the upper joints and recognising their
special motions, we verified the proposed method on
our recorded ASD children dataset and adult dataset,
the experimental results show the proposed method
is effective on the dataset.

Index Terms—Joints estimation, Activity recognition,
ASD dataset.

1. Introduction

The activity recognition usually means to learn
about the activities from video sequences and iden-
tify similar actions with machine learning method.
Human activity recognition is very important in
computer vision research area today as it can be
applied in many fields including the surveillance
system, human-machine interfaces, video indexing,
virtual coaching, VR games, patient monitor sys-
tem[1],and some motion related application [14].

In general, the activity recognition system
needs to have the ability to track the human motion
[18] and recognise complex human motions from
a continuous video sequence or from only a static
image. Such a system usually can be classified
into two approaches according to the input data
in a contactless method, which is known as the
computer vision based activity recognition [22],
instead of a wearable-based method [13]. As the

wearable-based method could limit the human pose
and affect the possible motion, we only focus on
the vision-based method in this paper.

Different features have been used in activity
recognition methods. Michel [19]adopted a track-
ing method to capture the articulated motion in-
cluding the 3D position and orientation with two
RGB-D cameras. Spatio-temporal and bag-of-word
features are used to represent human motion in
many works of literature. Semantic features are
used to explain the meaning of a motion. For
example, it is understandable that a car appears on
a road while it is not acceptable for some people
that a giraffe appears in a kitchen.

Although lots of researchers work hard on the
activity recognition using different methods, many
factors, including the diversity of appearances, the
variation of the camera angles, background clutter,
illumination changes in a scene, and occlusion by
other objects, pose a challenge on the performance
of the activity recognition. Some research methods
were proposed to handle some of these issues or
one aspect of them. For example, to handle the illu-
mination changes, depth information based method
[25] were used for more accurately estimating the
human pose. Multi-view based method [7] was
used in the activity recognition system to avoid
the negative effect of occlusion.

2. Related work

Activity recognition has been researched for
many years and some review papers [3, 17, 26, 30]
suggested the features for effectively representing
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motions play a key role in this area. Hassaballah
[8] provided an overview of image feature range
from detection, description to feature matching
which are fundamental components for handling
computer vision issues. The interest point and lo-
cal image features contributed to represent object
patterns in a static image, but failed to represent
features for a dynamic image sequence. Space-
time interest point was raised as a response. Such
a method [16] performed well for some simple
motions such as walking and running.

To improve the human pose estimation on a
single image, one way is to extending a static
recognition method with utilising a regularisation
on the body parts over time by using a probabilistic
graphical model [4]. This method typically repre-
sents human body parts corresponding to different
major body parts such as head, shoulders, elbows
and hands. By forming these node parts into a
graph, a kinematic method is usually adopted to
capture the inter-part relationships. The Pictorial
structure model (PSM) [10] allowed the inference
to estimate the possible poses over the pose space.

The ordinal pattern is normally seen as the
low-level feature. A middle-level feature, which
was integrated into an orderlet [29] character,
was proposed to represent the relationships among
joints and shape information respectively on both
skeletons and depth maps. While High-level pose
features (HLPF) were introduced for encoding
spatial and temporal relations of human skeleton
joints [9]. Dense trajectories feature were also been
proved of an excellent performance in some activ-
ity recognition datasets [27]. In addition, spatio-
temporal features have been applied in the activity
recognition for representing the action with a dense
feature set, while Shi [23] introduced a fast random
sampling method on a local part model to speed
up the computational efficiency.

Cheron argued that the representation of hu-
man pose dominates the performance of the action
recognition and introduced a pose-based scheme,
which aggregated the descriptor based on the hu-
man pose for tracking human body parts [5]. This
supervised method extremely relied on the anno-
tation of the human body parts and hand-crafted
feature extraction, which needs considerable rela-
tive skills and lots of restless work, thus puts lots
of burden on the human.

There is little previous work with enough anno-
tations contribute for pose estimation, Johnson and
his colleagues [10] proposed a method to estimate
the human pose with only inaccurate annotation.
Some computer vision related work had proved
that the approach is useful, for example, the collab-
orative LabelMe object annotation system [21] and
utility data annotation [24] still benefit when ob-
taining data from some inexperienced annotators.

Apart from the methods for estimating poses
in a single image and the spatio-temporal feature
representing methods, a scheme, for continuous
motion recognition, based on the static image
feature is also important. With accurate skeleton
information such as the position and the angles, a
skeletal representation is needed for encoding the
features with a dynamic time warping. Vemulapalli
[25] explored a method through modelling the 3D
geometric relationships among body parts with 3D
space rotations and translations. To estimate the 3D
human pose by optimising the joints over the set
of the manifold with a particle-based optimisation
algorithm, the low-dimensional manifold [7] was
analysed to emphasize the importance of a suc-
cessful scheme for pose estimation in videos and
handle the temporal coupling across time.

3. Method

In this section, we will firstly introduce the
method with sampling strategy used for estimating
the key joints information, then we introduce a
skeletal descriptor method to represent the joints,
to make the scheme work more effectively, a Gaus-
sian Process is adopted for mapping between dif-
ferent dimensional space, then an on-line method
is utilised for recognizing the real-time activities
of the child.

A. Feature model
Human pose feature, especially the body joints,

is essential for activity recognition. A deformable
mixture-of-parts model is used to represent the
body parts for a single image because of the
computational efficiency and considerable property
[28]. The upper body part is modelled as a set of
major joints which are the head, neck, two shoul-
ders, two elbows, and two wrists (or hands). The-
ses joints contribute significantly the performance
of the upper body motions. A pictorial structure



model which uses the tree-type graph with nodes
is introduced to represent each joint position and
orientation. For some specific camera angles, self
occlusion could happen. To handle this issue, a
cluster method is used to classify each body part
with annotated ground truth Ti for one of the n
training images. The problem is formulated as a
maximum-likelihood problem through calculating
the highest probability:

Θ̂ = argmax
Θ

N∏
i=1

k
max
j=1

P (Ti|Θj) (1)

There are k pose clusters in total, P (Ti|Θj) is
the posterior probability of a particular pose for
an image I , which is defined as:

P (p|I) ∝ f(I|p)f(p) =
∏
i

f(ri|li)
∏

(li,lj∈E)

(li|lj)

(2)
li denotes the 2D position and orientation,

which is one element of the set p = {l1, l2, ...ln},ri
is the corresponding image region, the prior term
defines the prior probability of a configuration.
This has two main advantages: on one side, it can
help to overcome the ambiguous image data, on the
other side, it limits the model from the plausible
human configurations when the kinematic limits of
the body is learned.

In addition, a linear SVM classifier is used for
each body parts, the classifier is bootstrapped with
some negative samples of other body regions and
non-body regions for training. The responses can
be computed for each body part is:

p(ri|li,Θi) ∝ max
j=1...n

wjΦ(ri) (3)

In which wj is the weight vector for component j,
Phi(ri) is the feature vector from the image region
ri. The maximum value allows us to determine the
appearances mode with the highest confidence.

B. Dense sampling
For a more efficient computation, we use a

random sampling strategy for the denser patches,
let us look an image with size n×m for instance,
the number of possible sampled patches is n4

which is explained in [15], besides, it is proved that
the performance could be improved with randomly
sampled patches for each image [20]. Based on

this, reducing the number of sampled points for
an individual frame and still maintain an efficient
sampling density for representing the features.

C. Descriptor
With the skeleton information obtained, we use

a skeletal representation method to represent the
body part. The method was proposed in a previous
paper[25], which mainly considered a whole body
parts, we slightly change the method for represent
only the upper body. When a pair of body parts is
given, their relative geometry is described as em
and en, which denote the eight joints and oriented
rigid body parts respectively, the starting point
(enm1(t)) and end point (enm2(t)) of each part can
be represented in a local coordinate system at time
instance t.[
enm1(t) enm2(t)

1 1

]
=

[
Rm,n(t)

−→
d m,n(t)

0 1

]0 lm
0 0
0 0
1 1


(4)

[
emn1(t) emn2(t)

1 1

]
=

[
Rn,m(t)

−→
d n,m(t)

0 1

]0 ln
0 0
0 0
1 1


(5)

where Rm,n(t) and Rn,m(t) are the rotations,−→
d m,n(t) and

−→
d n,m(t) are the translations, these

are measured in the local coordinate system. More
detailed information for representing the joints we
refer the [25].

D. Feature mapping
From the joint information in motion capture

data, we use a Gaussian Process regressions, which
is a straightforward extension of Gaussian Mixture
Model, to map a low-dimensional space from a
high-dimensional space.The equation 7 indicates
the back process of the mapping.

x = fa ∼ GP (m(y), k(y, y
′
)) (6)

y = ga ∼ GP (m(x), k(x, x
′
)) (7)

fa denotes the mapping from high-dimensional
to low-dimensional space, while ga denotes the
inverse process, where m represents the mean and
k denotes the covariance functions. Ma is learned



to model the temporal transitions between effective
motions for an action-specific manifold.

xt = Ma(xt−1) ∼ GP (m(x− 1), k(xt−1, x
′

t−1))
(8)

Instead of using a single state space, a set
of action-specific manifolds is considered, Ac is
defined as a set

{
a1, a2, ..., a|A|

}
,which denotes

the action classes, where we consider to learn
an action-specific manifold for all the classes. As
the manifolds only utilised the joint space, the
representation of a body pose is determined by
ya = (r, t,Θa), (r, t) is a vector indicates the
global orientation and position, Θ denotes the joint
angles.

E. Classification
As our aim is to recognise both static mo-

tions and dynamic motions, we introduce a scheme
which can estimate both motions, for the single
image, a pose set regards to a tree-graph which
including the 2D coordinates for representing the
body parts is defined as:

Ps = pi = (xi, yi) (9)

Then we formulate the estimation issue as a
minimization problem with the cost C(I, Ps):

C(I, Ps) := Σiφi(I, p
i)+Σi,uϕi,u(pi−pu) (10)

F. Real-time activity recognition
For a real-time activity recognition system, it

needs to predict a continuous video sequences with
reliable scores of different classes. The frame-level
score is defined as:

R(It) =

a|A|∑
a1=1

αmRm(It) (11)

Rm(It) denotes the response of a orderlet on the
frame It,while αm is the corresponding weight,
which decides the balance between the positive and
negative votes. It is clear that different types of
actions have various properties such as the action
speed and the durations. These make it difficult
to determine the size of a fixed-length window.
The temporal smoothness with adaptive smooth-
ing window length is introduced for a reasonable
result. The main concept is to maintain a reliable
voting score for t− th frame.

S(Vt) = max(0, S(V )t−1 +R(Tt)) (12)

S(Vt) denotes the score at time t, if the value
is greater than 0, it means the current action is
continuing, on the contrast, if the value is less than
0 or equal to 0, there is no action is happening.
Then the value will be reset to 0 and forecasts that
a new action will start.

4. Experiments and Discussion

The main aim of this work is to recognise 11
activities of ASD children for assisting the thera-
pist in curing the patients, to verify the efficiency
of the proposed activity recognition framework, we
test the method on two datasets, one is captured
with 8 ASD children, and the other is collected
with 15 adult people doing the same motions.

Figure 1: The result samples for representing the
joints

As the motions of ASD children are not exactly
the same as the normal people, we first labelled
the motions from recording dataset and ask the
therapist to decide whether the motions are proper
or not, all the labelled data used for training in
our work is checked by the therapist to make sure
the performance is convincing. The uncertainty of
motions done by ASD children makes the record-
ing work more difficult, thus makes times of each
motion in the dataset are different. To demonstrate
the method is effective, we also verify the method
on adult motion dataset.

In this section, we report the results on our
recorded dataset within only our method as the
method is designed only for the specific purpose.
For protecting the privacy of the ASD children, we



only show image results from the adult dataset.
Figure 1 shows some result samples from our
dataset. The joints information is estimated with
our method and the table 1 shows the average
accuracy of the estimating results for the upper
body major joints.

Our dataset is extremely more challenging
than the existing dataset as there are more unpre-
dicted factors when recording the ASD children
behaviour dataset. The average accuracy is still
kept at 84.7%.

TABLE 1: The average accuracy of the joints(%)

joints accuracy
neck 87.9
shoulders 84.6
elbows 76.6
wrists 78.2
upper body 96.3

The figure 2 indicates the confusion matrix
for estimating the motions on both our datasets.
The average accuracy for predicting the motions is
85.9%, which can be seen as an acceptable result.

Figure 2: The recognition results

In this paper, we mainly focus on the atomic
motions including namely waving the hand, drink-
ing, and moving a toy etc., which are defined by
the therapist, these movements indicate a stable
coordination pattern among the skeleton joints,
each activity normally contains a joint set order
[29].For example, when the child is doing the
drinking motion, the child first hold the cup from
the table, move the cup to his/her mouth, hold on
for some seconds and put the cup back to the table.
We believe that if skeleton joints especially the
wrist, elbow and shoulder are estimated accurately,

they will provide us with an effective feature for
modelling the motion and recognizing the motion.
Thus the accuracy of joints information comes
from the very first step for estimating both the
continuous motions and some static motions.

We have evaluated our method on both ASD
dataset and adult dataset, and have presented the
joint estimating results and motion estimation re-
sults. The accurate estimation of joint could pro-
vide an excellent classification result even using a
linear SVM classification method, which implies
the importance of the joints estimation for our
datasets.

5. Conclusion

In this paper, we propose a novel activity
recognition method which is designed especially
for recognising the ASD children motion, we run
our algorithm on both the ASD dataset and the
adult dataset to verify the effectiveness of the pro-
posed method. The experimental results show that
our approach performs well on the datasets we col-
lected. Our work can be applied in a real-time sys-
tem with an integrated gaze estimation method [2]
and hand gesture recognition[12][11][6] for assist-
ing therapist to communicate with ASD children,
the research confirms that the correct classification
of the body parts leads to a significant improve-
ment in estimating the human joints, and the pose
estimation can benefit from the accurate human
joints. How to estimate the joints from less body
annotation or inaccurate body parts annotation will
be our next work, we will also compare our method
on different challenge datasets to provide a more
convincing result in the future work.
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