38 research outputs found

    Single cell atlas for 11 non-model mammals, reptiles and birds.

    Get PDF
    The availability of viral entry factors is a prerequisite for the cross-species transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Large-scale single-cell screening of animal cells could reveal the expression patterns of viral entry genes in different hosts. However, such exploration for SARS-CoV-2 remains limited. Here, we perform single-nucleus RNA sequencing for 11 non-model species, including pets (cat, dog, hamster, and lizard), livestock (goat and rabbit), poultry (duck and pigeon), and wildlife (pangolin, tiger, and deer), and investigated the co-expression of ACE2 and TMPRSS2. Furthermore, cross-species analysis of the lung cell atlas of the studied mammals, reptiles, and birds reveals core developmental programs, critical connectomes, and conserved regulatory circuits among these evolutionarily distant species. Overall, our work provides a compendium of gene expression profiles for non-model animals, which could be employed to identify potential SARS-CoV-2 target cells and putative zoonotic reservoirs

    The Effects of Pulse Parameters on Weld Geometry and Microstructure of a Pulsed Laser Welding Ni-Base Alloy Thin Sheet with Filler Wire

    No full text
    Due to its excellent resistance to corrosive environments and its superior mechanical properties, the Ni-based Hastelloy C-276 alloy was chosen as the material of the stator and rotor cans of a nuclear main pump. In the present work, the Hastelloy C-276 thin sheet 0.5 mm in thickness was welded with filler wire by a pulsed laser. The results indicated that the weld pool geometry and microstructure were significantly affected by the duty ratio, which was determined by the pulse duration and repetition rate under a certain heat input. The fusion zone area was mainly affected by the duty ratio, and the relationship was given by a quadratic polynomial equation. The increase in the duty ratio coarsened the grain size, but did not obviously affect microhardness. The weld geometry and base metal dilution rate was manipulated by controlling pulsed parameters without causing significant change to the performance of the weld. However, it should be noted that, with a larger duty ratio, the partial molten zone is a potential weakness of the weld

    Mining Stability Criterion of Weakly Cemented Aquiclude and Its Application

    No full text
    The effective discrimination of aquiclude mining stability is one of the important indexes for the feasibility judgement of water-conserved mining. Based on the mining-induced deformation characteristics of weakly cemented aquiclude and the water level change of weakly cemented aquifer in northwest China, a mechanical model of mining stability of weakly cemented aquiclude is established, and the mining instability criterion of weakly cemented aquiclude and its influencing factors are analyzed. The results show that the weakly cemented aquiclude has strong plastic deformation ability and mainly undergoes bending deformation during coal mining. Considering the mining-induced bending deformation of weakly cemented aquiclude and the groundwater pressure variation of the weakly cemented aquifer, the expressions of the deflection, stress components, and strain components of weakly cemented aquiclude are derived. Furthermore, the stress instability and strain instability criteria of the weakly cemented aquiclude are proposed. The influences of aquiclude thickness, elastic modulus, Poisson’s ratio, groundwater level, coalface length, and longwall panel length on the mining stability of weakly cemented aquiclude are analyzed. The research results are applied to the feasibility judgment of water-conserved mining in Xinjiang Ehuobulake Coal Mine, and the validity of the mining stability criterion of weakly cemented aquiclude is verified

    Alternate-stacked Li4Ti5O12 nanosheets/d-Ti3C2 flexible film as a current collector-free, high-capacity and robust cathode for rechargeable Mg batteries

    No full text
    Rechargeable magnesium batteries (RMBs) have gained increasing attention owing to its high volumetric capacity, crust abundance, and safety from dendrite-free characteristic. However, the lack of development of high-performance cathode materials with long cycling stability and satisfactory capacity has greatly restricted the development of RMBs. Herein, a self-supported, current collector-free and soft electrode is prepared with delaminated Ti3C2 (d-Ti3C2) and Li4Ti5O12 nanosheets by simple vacuum filtration as flexible cathode in RMBs. Fabricated into a full cell with hybrid AlCl3/MgCl2/Mg(TFSI)2 electrolyte and Mg anode (a thin Mg foil with thickness of 50 μm), the flexible cathode shows high initial specific capacity of 320 mAh g−1 at 20 mA g−1, excellent cycling stability (good retention even after 1000 cycles) and outstanding rate performance. Detailed mechanistic studies reveal that introduction of d-Ti3C2 provide fast transport paths for electrons and Mg2+. The enlarged layer spacing of composited d-Ti3C2 accounts for significant increment in capacity. Benefiting from above-mentioned advantages, the best performance among Ti-based electrode materials is realized and make wearable devices powered by RMBs possible, thus circumventing the safety issues of lithium batteries

    Efficient Visible Light-Driven Splitting of Alcohols into Hydrogen and Corresponding Carbonyl Compounds over a Ni-Modified CdS Photocatalyst

    No full text
    Splitting of alcohols into hydrogen and corresponding carbonyl compounds has potential applications in hydrogen production and chemical industry. Herein, we report that a heterogeneous photocatalyst (Ni-modified CdS nanoparticles) could efficiently split alcohols into hydrogen and corresponding aldehydes or ketones in a stoichiometric manner under visible light irradiation. Optimized apparent quantum yields of 38%, 46%, and 48% were obtained at 447 nm for dehydrogenation of methanol, ethanol, and 2-propanol, respectively. In the case of dehydrogenation of 2-propanol, a turnover number of greater than 44 000 was achieved. To our knowledge, these are unprecedented values for photocatalytic splitting of liquid alcohols under visible light to date. Besides, the current catalyst system functions well with other aliphatic and aromatic alcohols, affording the corresponding carbonyl compounds with good to excellent conversion and outstanding selectivity. Moreover, mechanistic investigations suggest that an interface between Ni nanocrystal and CdS plays a key role in the reaction mechanism of the photocatalytic splitting of alcohol

    EFHD2 suppresses intestinal inflammation by blocking intestinal epithelial cell TNFR1 internalization and cell death

    No full text
    Abstract TNF acts as one pathogenic driver for inducing intestinal epithelial cell (IEC) death and substantial intestinal inflammation. How the IEC death is regulated to physiologically prevent intestinal inflammation needs further investigation. Here, we report that EF-hand domain-containing protein D2 (EFHD2), highly expressed in normal intestine tissues but decreased in intestinal biopsy samples of ulcerative colitis patients, protects intestinal epithelium from TNF-induced IEC apoptosis. EFHD2 inhibits TNF-induced apoptosis in primary IECs and intestinal organoids (enteroids). Mice deficient of Efhd2 in IECs exhibit excessive IEC death and exacerbated experimental colitis. Mechanistically, EFHD2 interacts with Cofilin and suppresses Cofilin phosphorylation, thus blocking TNF receptor I (TNFR1) internalization to inhibit IEC apoptosis and consequently protecting intestine from inflammation. Our findings deepen the understanding of EFHD2 as the key regulator of membrane receptor trafficking, providing insight into death receptor signals and autoinflammatory diseases

    Catalyst-Free Growth of Three-Dimensional Graphene Flakes and Graphene/g‑C<sub>3</sub>N<sub>4</sub> Composite for Hydrocarbon Oxidation

    No full text
    Mass production of high-quality graphene flakes is important for commercial applications. Graphene microsheets have been produced on an industrial scale by chemical and liquid-phase exfoliation of graphite. However, strong-interaction-induced interlayer aggregation usually leads to the degradation of their intrinsic properties. Moreover, the crystallinity or layer-thickness controllability is not so perfect to fulfill the requirement for advanced technologies. Herein, we report a quartz-powder-derived chemical vapor deposition growth of three-dimensional (3D) high-quality graphene flakes and demonstrate the fabrication and application of graphene/g-C<sub>3</sub>N<sub>4</sub> composites. The graphene flakes obtained after the removal of growth substrates exhibit the 3D curved microstructure, controllable layer thickness, good crystallinity, as well as weak interlayer interactions suitable for preventing the interlayer stacking. Benefiting from this, we achieved the direct synthesis of g-C<sub>3</sub>N<sub>4</sub> on purified graphene flakes to form the uniform graphene/g-C<sub>3</sub>N<sub>4</sub> composite, which provides efficient electron transfer interfaces to boost its catalytic oxidation activity of cycloalkane with relatively high yield, good selectivity, and reliable stability
    corecore