50 research outputs found

    Double-shell CeO2:Yb, Er@SiO2@Ag upconversion composite nanofibers as an assistant layer enhanced near-infrared harvesting for dye-sensitized solar cells

    Get PDF
    Double-shell CeO2:Yb,Er@SiO2@ Ag upconversion composite nanofibers are synthesized by electro- spinning and subsequent process. CeO2:Yb,Er@SiO2@ Ag nanofibers show high upconversion luminescence property due to the coating of amorphous SiO2 and the surface plasmon resonance effect of Ag nanoparticles. CeO2:Yb,Er@SiO2@ Ag nanofibers act as an assistant layer in dye-sensitized solar cells (DSSCs) and enhance the photoelectric conversion efficiency (PCE) to 8.17%. The photocurrent-voltage characteristic is obtained under 980 nm laser as illumination light source. In addition, the absorption of the incident photon-to-current conversion efficiency curve in 900-1000 nm near-infrared light confirms that the introduction of the upconversion nanomaterial broadens the absorption range, improves the utilization rate of the sunlight and increases the PCE of DSSCs. (C) 2018 Elsevier B.V. All rights reserved

    Roller fault detection of belt conveyor based on φ-OTDR technology

    No full text
    For low correctness and efficiency of existing roller fault detection methods of belt conveyor, a roller fault detection method of belt conveyor based on φOTDR technology was proposed. The method uses backward Rayleigh scattering of coherent pulse light to detect vibration signals of roller, so as to identify and locate fault roller. The experimental and test results show the method can realize roller fault detection of belt conveyor with location error of less than 5 m

    Relationships between p14ARF Gene Methylation and Clinicopathological Features of Colorectal Cancer: A Meta-Analysis.

    No full text
    We conducted a meta-analysis to explore the relationships between p14ARF gene methylation and clinicopathological features of colorectal cancer (CRC). Databases, including Pubmed, Embase and Cochrane Library, were searched and, finally, a total of 18 eligible researches encompassing 1988 CRC patients were selected. Combined odds ratios (ORs) with 95% confidence intervals (95% CIs) were evaluated under a fixed effects model for absence of heterogeneity. Significant associations were observed between p14ARF gene methylation and tumor location (OR = 2.35, 95% CI: 1.55-3.55, P = 0.001), microsatellite instability (MSI) status (OR = 3.28, 95% CI: 2.12-5.07, P<0.0001). However, there were no significant associations between p14ARF gene methylation and tumor stage, tumor differentiation. We concluded that p14ARF gene methylation may be significantly associated with tumor location, and MSI status of CRC

    Ratio of metastatic to examined lymph nodes, a helpful staging system and independent prognostic factor of esophagogastric junction cancer.

    Get PDF
    BACKGROUND: The incidence of the esophagogastric junction cancer is growing rapidly. The purpose of this study is to clarify the outcome of the ratio between metastatic and examined lymph nodes in esophagogastric junction cancer patients with or without 7 examined lymph nodes. METHODS: A total of 3,481 patients who underwent operation are identified from the Surveillance, Epidemiology, and End Results database. Different lymph nodes resected groups are analyzed to test the lymph nodes ratio factor. RESULTS: There are 2522 patients with 7 or more lymph nodes resected and 959 patients with less than 7 lymph nodes resected. Lymph nodes ratio and lymph node involvement are independent prognostic factors. But the lymph nodes ratio categories have a better prognostic value than the lymph node involvement categories. Compared with lymph node involvement categories, lymph nodes ratio categories represent patients with more homogeneous overall survival rate. CONCLUSIONS: This study defines that the lymph nodes ratio is an independent prognostic factor for esophagogastric junction cancer. The lymph nodes ratio can prevent stage migration and may be a helpful system to predict the prognosis of esophagogastric junction cancer patients

    RNA editing analysis of ATP synthase genes in the cotton cytoplasmic male sterile line H276A

    No full text
    Abstract Background Pollen development is an energy-consuming process that particularly occurs during meiosis. Low levels of adenosine triphosphate (ATP) may cause cell death, resulting in CMS (cytoplasmic male sterility). DNA sequence differences in ATP synthase genes have been revealed between the N- and S-cytoplasms in the cotton CMS system. However, very few data are available at the RNA level. In this study, we compared five ATP synthase genes in the H276A, H276B and fertile F1 (H276A/H268) lines using RNA editing, RNA blotting and quantitative real time-PCR (qRT-PCR) to explore their contribution to CMS. A molecular marker for identifying male sterile cytoplasm (MSC) was also developed. Results RNA blotting revealed the absence of any novel orf for the ATP synthase gene sequence in the three lines. Forty-one RNA editing sites were identified in the coding sequences. RNA editing showed that proteins had 32.43% higher hydrophobicity and that 39.02% of RNA editing sites had proline converted to leucine. Two new stop codons were detected in atp6 and atp9 by RNA editing. Real-time qRT-PCR data showed that the atp1, atp6, atp8, and atp9 genes had substantially lower expression levels in H276A compared with those in H276B. By contrast, the expression levels of all five genes were increased in F1 (H276A/H268). Moreover, a molecular marker based on a 6-bp deletion upstream of atp8 in H276A was developed to identify male sterile cytoplasm (MSC) in cotton. Conclusions Our data substantially contributes to the understanding of the function of ATP synthase genes in cotton CMS. Therefore, we suggest that ATP synthase genes might be an indirect cause of cotton CMS. Further research is needed to investigate the relationship among ATP synthase genes in cotton CMS
    corecore