155 research outputs found

    Toll-like receptor-mediated innate immunity orchestrates adaptive immune responses in HBV infection

    Get PDF
    Chronic hepatitis B virus (HBV) infection remains to be a substantial global burden, especially for end-stage liver diseases. It is well accepted that HBV-specific T and B cells are essential for controlling HBV infection. Toll-like receptors (TLRs) represent one of the major first-line antiviral defenses through intracellular signaling pathways that induce antiviral inflammatory cytokines and interferons, thereby shaping adaptive immunity. However, HBV has evolved strategies to counter TLR responses by suppressing the expression of TLRs and blocking the downstream signaling pathways, thus limiting HBV-specific adaptive immunity and facilitating viral persistence. Recent studies have stated that stimulation of the TLR signaling pathway by different TLR agonists strengthens host innate immune responses and results in suppression of HBV replication. In this review, we will discuss how TLR-mediated responses shape HBV-specific adaptive immunity as demonstrated in different experimental models. This information may provide important insight for HBV functional cure based on TLR agonists as immunomodulators

    Effect of Over Zone Feeding on Rail Potential and Stray Current in DC Mass Transit System

    Get PDF
    DC traction power system with running rails as reflux conductor has been adopted in Guangzhou Metro Line 8. During the operation of the Guangzhou Metro Line, a high rail potential has been observed, and the leakage of stray current increases significantly. Because of the electrical connectivity of the catenary, over zone feeding of traction current may exist when multiple trains run in multiple traction substations. Guangzhou Metro Line 8 suspects that over zone feeding of traction current is the major cause of the high rail potential. In this paper, a unified chain model of DC traction power system is proposed to simulate the distribution of rail potential and stray current. Field tests and simulations have been carried out to study whether over zone feeding has an impact on rail potential and stray current. Results show that over zone feeding widely exists in DC traction power system and that the rail potential and stray current can be reduced effectively by preventing the over zone feeding of traction current

    Construction of High-Density Genetic Maps and Detection of QTLs Associated With Huanglongbing Tolerance in Citrus

    Get PDF
    Huanglongbing (HLB), or citrus greening, is the most devastating disease in citrus worldwide. Commercial citrus varieties including sweet orange (Citrus sinensis) are highly susceptible to HLB, and trifoliate orange (Poncirus trifoliata, a close Citrus relative) is widely considered resistant or highly tolerant to HLB. In this study, an intergeneric F1 population of sweet orange and trifoliate orange was genotyped by Genotyping-by-Sequencing, and high-density SNP-based genetic maps were constructed separately for trifoliate orange and sweet orange. The two genetic maps exhibited high synteny and high coverage of the citrus genome. Progenies of the F1 population and their parents were planted in a replicated field trial, exposed to intense HLB pressure for 3 years, and then evaluated for susceptibility to HLB over 2 years. The F1 population exhibited a wide range in severity of HLB foliar symptom and canopy damage. Genome-wide QTL analysis based on the phenotypic data of foliar symptom and canopy damage in 2 years identified three clusters of repeatable QTLs in trifoliate orange linkage groups LG-t6, LG-t8 and LG-t9. Co-localization of QTLs for two traits was observed within all three regions. Additionally, one cluster of QTLs in sweet orange (linkage group LG-s7) was also detected. The majority of the identified QTLs each explained 18–30% of the phenotypic variation, indicating their major role in determining HLB responses. These results show, for the first time, a quantitative genetic nature yet the presence of major loci for the HLB tolerance in trifoliate orange. The results suggest that sweet orange also contains useful genetic factor(s) for improving HLB tolerance in commercial citrus varieties. Findings from this study should be very valuable and timely to researchers worldwide as they are hastily searching for genetic solutions to the devastating HLB crisis through breeding, genetic engineering, or genome editing

    Phloem Regeneration Is a Mechanism for Huanglongbing-Tolerance of “Bearss” Lemon and “LB8-9” Sugar Belle® Mandarin

    Get PDF
    Huanglongbing (HLB) is an extremely destructive and lethal disease of citrus worldwide, presumably caused by phloem-limited bacteria, Candidatus Liberibacter asiaticus (CLas). The widespread invasiveness of the HLB pathogen and lack of natural HLB-resistant citrus cultivars have underscored the need for identifying tolerant citrus genotypes to support the current citrus industry’s survival and potentially to lead to future natural HLB resistance. In this study, transverse sections of leaf lamina and midribs were examined with light and epifluorescence microscopy to determine anatomical characteristics that underlie HLB-tolerant mechanisms operating among “Bearss” lemon, “LB8-9” Sugar Belle® mandarin, and its sibling trees compared with HLB-sensitive “Valencia” sweet orange. The common anatomical aberrations observed in all CLas-infected varieties are as follows: phloem necrosis, hypertrophic phloem parenchyma cells, phloem plugging with abundant callose depositions, phloem collapse with cell wall distortion and thickening, excessive starch accumulation, and sometimes even cambium degeneration. Anatomical distribution of starch accumulation even extended to tracheid elements. Although there were physical, morphological, and pathological similarities in the examined foliage, internal structural preservation in “Bearss” lemon and “LB8-9” Sugar Belle® mandarin was superior compared with HLB-sensitive “Valencia” sweet orange and siblings of “LB8-9” Sugar Belle® mandarin. Intriguingly, there was substantial phloem regeneration in the tolerant types that may compensate for the dysfunctional phloem, in comparison with the sensitive selections. The lower levels of phloem disruption, together with greater phloem regeneration, are two key elements that contribute to HLB tolerance in diverse citrus cultivars
    corecore